
Lecture notes for “Category Theory”

The following text is a reworking by Benno van den Berg of Jaap van Oosten’s
lecture notes “Basic Category Theory and Topos Theory”.

Contents

1 Categories 5

1.1 Categories . 5

1.2 Some special arrows . 6

1.3 Exercises . 7

2 Functors and constructions on categories 9

2.1 Functors . 9

2.2 New categories from old . 11

2.2.1 Product category . 11

2.2.2 Slice categories . 11

2.2.3 Opposite category . 11

2.3 Terminal object . 12

2.4 Exercises . 12

3 Natural transformations and equivalences 14

3.1 Natural transformations . 14

3.2 Examples of natural transformations 15

3.3 Equivalence of categories . 16

3.4 Exercises . 18

4 Limits and colimits 20

4.1 Limits . 20

4.1.1 Terminal objects, again 20

4.1.2 Binary products . 21

4.1.3 Equalizers . 21

4.1.4 Pullbacks . 22

4.1.5 Some more terminology 23

4.2 Colimits . 23

4.3 Exercises . 25

5 Complete categories 29

2

5.1 Limits by products and equalizers 29

5.2 Properties of complete categories 31

5.3 Exercises . 32

6 Cartesian closed categories 34

6.1 Exponentials . 34

6.2 Natural numbers object . 38

6.3 Exercises . 39

7 Presheaves 41

7.1 Examples and first properties . 41

7.2 The Yoneda Lemma . 42

7.3 Applications of the Yoneda Lemma 45

7.3.1 The Yoneda embedding 46

7.3.2 Arguments from representability 46

7.3.3 Presheaves are cartesian closed 46

7.4 Exercises . 47

8 Presheaves as a topos 48

8.1 Subobject classifier . 48

8.2 Subobject classifiers in presheaves 50

8.3 Exercises . 51

9 Adjunctions 53

9.1 Definition and examples . 53

9.2 Unit and counit of an adjunction 56

9.3 Preservation of (co)limits by adjoint functors 57

9.4 Exercises . 59

10 Monads and Algebras 62

10.1 Monads and adjunctions . 62

10.2 Algebras for a monad . 63

10.3 T -algebras at least as complete as C 68

3

10.4 Reflective subcategories . 68

10.5 Exercises . 71

11 Presheaves revisited 74

11.1 The category of elements . 74

11.2 Kan extensions . 75

11.3 Exercises . 78

4

1 Categories

1.1 Categories

Definition 1.1 A category C is given by a collection C0 of objects and a collec-
tion C1 of arrows which have the following structure.

• Each arrow has a domain and a codomain which are objects; one writes

f :X → Y or X
f→ Y if X is the domain of the arrow f , and Y its

codomain. One also writes X = dom(f) and Y = cod(f);

• Given two arrows f and g such that cod(f) = dom(g), the composition
of f and g, written gf , is defined and has domain dom(f) and codomain
cod(g):

(X
f→ Y

g→ Z) 7→ (X
gf→ Z)

• Composition is associative, that is: given f :X → Y , g:Y → Z and h:Z →
W , h(gf) = (hg)f ;

• For every object X there is an identity arrow 1X :X → X, satisfying
1Xg = g for every g:Y → X and f1X = f for every f :X → Y .

Instead of “arrow” we also use the terms “morphism” or “map”.

Examples

a) 1 is the category with one object ∗ and one arrow, 1∗;

b) 0 is the empty category. It has no objects and no arrows.

c) A preorder is a set X together with a binary relation ≤ which is reflexive
(i.e. x ≤ x for all x ∈ X) and transitive (i.e. x ≤ y and y ≤ z imply
x ≤ z for all x, y, z ∈ X). This can be viewed as a category, with set of
objects X and for every pair of objects (x, y) such that x ≤ y, exactly one
arrow: x→ y. Indeed, we can think of preorders as categories with a set
of objects and which are such that for any two objects X,Y of C there is
at most one arrow: X → Y .

d) A monoid is a set X together with a binary operation, written like mul-
tiplication: xy for x, y ∈ X, which is associative and has a unit element
e ∈ X, satisfying ex = xe = x for all x ∈ X. Indeed, a monoid can be
seen as a special kind of category in which there is precisely one object.

e) Every directed graph can be made into a category as follows: the objects
are the vertices of the graph and the arrows are paths in the graph. We
call this the category freely generated by the graph D.

5

f) Set is the category which has the class of all sets as objects, and functions
between sets as arrows.

Most basic categories have as objects certain mathematical structures, and the
structure-preserving functions as morphisms. Examples:

f) Top is the category of topological spaces and continuous functions.

g) Grp is the category of groups and group homomorphisms.

h) Rng is the category of rings and ring homomorphisms.

i) Grph is the category of graphs and graph homomorphisms.

j) Pos is the category of partially ordered sets and monotone functions.

1.2 Some special arrows

We introduce three classes of maps which can be thought of as generalisations
of the notion of a bijection, an injection and a surjection, respectively.

Definition 1.2 A morphism f :A → B is an isomorphism (often abbreviated
as iso) if there is g:B → A such that fg = 1B and gf = 1A. We call g the
inverse of f (and vice versa, of course); it is unique if it exists. We also write
g = f−1.

If an isomorphism f :A→ B exists, we call the objects A and B isomorphic.
We denote this as A ∼= B.

Definition 1.3 We call an arrow f :A→ B monomorphism (often abbreviated
as mono) in a category C, if for any object C and for any pair of arrows g, h:C →
A, fg = fh implies g = h.

Definition 1.4 We call an arrow f :A→ B an epimorphism (often abbreviated
as epi , epimorphic) if for any object C and any pair of maps g, h:B → C,
gf = hf implies g = h.

Proposition 1.5 In the category Sets, a map f :Y → X is . . .

1. a bijection if and only if it is an iso.

2. an injection if and only if it is a mono.

3. a surjection if and only if it is an epi.

6

Proof. We expect the first statement to be obvious, so we concentrate on the
other two. It is not hard to see that injections are mono and surjections epi, so
we concentrate on the other direction.

So suppose f :Y → X is a mono in Sets and y0, y1 ∈ Y are elements in Y
such that f(y0) = f(y1). Then let 1 = {∗} be a set with a single element ∗
and let g, h: 1 → Y be the maps with g(∗) = y0 and h(∗) = y1. Then fg = fh
and g = h, because f is mono. Therefore y0 = y1 and we conclude that f is
injective.

Finally, suppose f :Y → X is epi in Sets. Consider the set {0, 1}, the maps
g:X → {0, 1} which is constant 1 and the map h:X → {0, 1} which sends every
x ∈ X which lies in the image of f to 1 and all the other elements to 0. Then
gf = hf and g = h, because g is epi. Therefore h is the constant 1 function and
f is surjective.

You can try to characterise the monos and epis in some of your favourite
categories. It is often a good guess that the monos are the injective morphisms
(this is true in Grp, Grph, Rng, Preord, Pos, for instance), while the epis
are the surjective morphisms. But especially to the second statement many
counterexamples exist.

Example. In Mon, the embedding N→ Z is an epimorphism.

For, suppose Z
f
//

g
// (M, e, ?) two monoid homomorphisms which agree on

the nonnegative integers. Then

f(−1) = f(−1) ? g(1) ? g(−1) = f(−1) ? f(1) ? g(−1) = g(−1)

so f and g agree on the whole of Z. Since N→ Z is a mono, this shows that in
Mon there are maps which are both mono and epi, without being iso (that is,
Mon is not balanced).

1.3 Exercises

Exercise 1 Show that 1X is the unique arrow with domain X and codomain
X with the property that f1X = f for every f :X → Y and 1Xg = g for every
g:Y → X.

Exercise 2 Let Rel be the category whose objects are sets and whose mor-
phisms A → B are relations R ⊆ A × B. Here composition of relations is
defined as follows: if R ⊆ A×B and S ⊆ B × C, then

S ◦R = {(a, c) : (∃b ∈ B) (a, b) ∈ R and (b, c) ∈ S }.

Show that Rel is a category.

7

Exercise 3 Show that if two of f , g and fg are iso, then so is the third.

Exercise 4 Show that “being isomorphic” is an equivalence relation on the
collection of objects of a category.

Exercise 5 Show that if g:Y → X and f :Z → Y are monos, then so is g ◦ f .
Show that if g ◦f is mono, then so is f . What are the corresponding statements
for epis?

Exercise 6 A map f :A→ B is called a split epi if there is g:B → A such that
fg = 1B (other names: in this case g is called a section of f , and f a retraction
of g).

(a) Show that isos are split epis and split epis are epi.

(b) Show that a map is an iso if and only if it is both a mono and a split epi.

8

2 Functors and constructions on categories

2.1 Functors

An important maxim in category theory is that every mathematical structure
comes with an appropriate notion of a structure-preserving map. When applying
this idea to the notion of category itself, we obtain the concept of a functor.

Definition 2.1 Given two categories C and D, a functor F : C → D consists
of operations F0: C0 → D0 and F1: C1 → D1, such that for each f :X → Y ,
F1(f):F0(X)→ F0(Y) and:

• for X
f→ Y

g→ Z, F1(gf) = F1(g)F1(f);

• F1(1X) = 1F0(X) for each X ∈ C0.

But usually we write just F instead of F0, F1.

Examples.

a) There is a functor U : Top → Set which assigns to any topological space
X its underlying set. We call this functor “forgetful”: it “forgets” the
mathematical structure. Similarly, there are forgetful functors Grp→ Set,
Grph→ Set, Rng→ Set, Pos→ Set etcetera;

b) For every category C there is a unique functor C → 1 and a unique one
0→ C;

c) Given a partially ordered set (X,≤) we make a topological space by defin-
ing U ⊆ X to be open iff for all x, y ∈ X, x ≤ y and x ∈ U imply y ∈ U
(U is “upwards closed”, or an “upper set”). This is a topology, called the
Alexandroff topology w.r.t. the order ≤.

If (X,≤) and (Y,≤) are two partially ordered sets, a function f :X →
Y is monotone for the orderings if and only if f is continuous for the
Alexandroff topologies. This gives an important functor: Pos→ Top.

d) Given a set A, consider the set Ã of strings a1 . . . an on the alphabet
A ∪ A−1 (A−1 consists of elements a−1 for each element a of A; the sets
A and A−1 are disjoint and in 1-1 correspondence with each other), such
that for no x ∈ A, xx−1 or x−1x is a substring of a1 . . . an. Given two
such strings ~a = a1 . . . an,~b = b1 . . . bm, let ~a ?~b the string formed by first
taking a1 . . . anb1 . . . bm and then removing from this string, successively,
substrings of form xx−1 or x−1x, until one has an element of Ã.

This defines a group structure on Ã. Ã is called the free group on the set
A. Please check this and prove that the assignment A 7→ Ã is part of a
functor: Set→ Grp. This functor is called the free functor.

9

Given two functors F : C → D and G:D → E one can define the composition
GF : C → E . This composition is of course associative and since we have, for
any category C, the identity functor C → C, we have a category Cat which has
categories as objects and functors as morphisms.

Examples.

a) If Mon is the category of monoids and Preorder the category of preorders,
then we have functors Mon → Cat and Preorder → Cat.

b) The operation which assigns to each directed graph the category freely
generated by it is part of a functor from the category Dgrph of directed
graphs to Cat.

Definition 2.2 We say a functor F preserves a property P if whenever an
object or arrow (or. . .) has property P , its F -image does as well.

Proposition 2.3 Every functor preserves isomorphisms.

Proof. If g:X → Y is the inverse of a map f :Y → X, then Fg is the inverse
of Ff , because

Fg ◦ Ff = F (g ◦ f) = F (1Y) = 1FY

and, in a similar way, Ff ◦ Fg = 1FX .

Now a functor does not in general preserve monos or epis: the example of
Mon shows that the forgetful functor Mon→ Set does not preserve epis.

Definition 2.4 A functor F reflects a property P if whenever the F -image of
something (object, arrow,. . .) has P , then that something has.

Definition 2.5 Let F : C → D be a functor. We say that F is full if for every
each pair of objects A,B of C, the function

FA,B : C(A,B)→ D(FA,FB)

is a surjection. If it is injective for each pair of objects A,B, we call F faithful .
If it is bijective for each pair of objects A,B, we call F fully faithful .

Proposition 2.6 (a) A faithful functor reflects epis and monos.

(b) A fully faithful functor reflects isos.

Proof. Exercise.

10

2.2 New categories from old

If we think of categories as a generalisation of monoids and preorders, then it
makes sense that constructions which make sense for monoids and preorders
could be generalised to categories. We will some examples of this principle here.

2.2.1 Product category

Given two categories C and D we can define the product category C × D which
has as objects pairs (C,D) ∈ C0 × D0, and as arrows:(C,D) → (C ′, D′) pairs
(f, g) with f :C → C ′ in C, and g:D → D′ in D. The projections determine
functors π0: C × D → C and π1: C × D → D.

In fact, the product of two categories defines a functor Cat × Cat → Cat.
(Please check!)

2.2.2 Slice categories

Let C be a category and C an object of C. The slice category C/C has as objects
all arrows g which have codomain C. An arrow from g:D → C to h:E → C in
C/C is an arrow k:D → E in C such that hk = g. Draw like:

D
k //

g

E

h
��

C

We say that this diagram commutes if we mean that hk = g.

2.2.3 Opposite category

If we are given a category C we can form a new category Cop which has the same
objects and arrows as C , but with reversed direction; so if f :X → Y in C then
f :Y → X in Cop. To make it notationally clear, write f̄ for the arrow Y → X
corresponding to f :X → Y in C. Composition in Cop is defined by:

f̄ ḡ = gf

The duality principle, a very important, albeit trivial, principle in category
theory, says that any valid statement about categories, involving the proper-
ties P1, . . . , Pn implies the “dualized” statement (where direction of arrows
is reversed) with the Pi replaced by P op

i . We will examples of this principle
throughout the course.

Any functor F : C → D gives a functor F op: Cop → Dop. In fact, we have a
functor (−)op: Cat→ Cat.

11

Remark 2.7 The definition of epi is “dual” to the definition of mono. That is,
f is epi in the category C if and only if f is mono in Cop, and vice versa. For
that reason the following is an example of the duality principle:

Example. If gf is mono, then f is mono. From this, “by duality”, if fg is epi,
then f is epi. (Please prove this statement!)

2.3 Terminal object

As another example of the duality principle let us discuss terminal and initial
objects.

Definition 2.8 An object X is called terminal in a category C if for any object
Y there is exactly one morphism Y → X in the category C. Dually, X is initial
if for all Y there is exactly one X → Y .

Theorem 2.9 If X and X ′ are two terminal objects, they are isomorphic. In
fact, there exists a unique isomorphism between them.

Proof. Suppose X and X ′ are terminal. Then because X is terminal, there is
a unique map f :X ′ → X, and because X ′ is terminal, there is a unique map
g:X → X ′. But because X is terminal, we also have that any two maps X → X
are identical, so we also have fg = 1X . Similarly, gf = 1X′ . In other words, f
and g are isomorphisms, and X and X ′ are isomorphic.

Remark 2.10 Of course, by duality, the same statement is true for initial ob-
jects.

2.4 Exercises

Exercise 7 Let I: Preorder → Cat be the inclusion functor. Show that there
is a functor J : Cat→ Preorder such that JI = 1.

Exercise 8 Given a topological space X, you can define a preorder ≤s on X
(the “specialization ordering”) as follows: say x ≤s y if for all open sets U , if
x ∈ U then y ∈ U . ≤s is a partial order iff X is a T0-space.

For many spaces, ≤s is trivial (in particular when X is T1) but in case X is
for example the Alexandroff topology on a poset (X,≤), then x ≤s y iff x ≤ y.

If f :X → Y is a continuous map of topological spaces then f is monotone
w.r.t. the specialization orderings ≤s. Show that this defines a functor Top →
Preord, where Preord is the category of preorders and monotone functions.

12

Exercise 9 Let X be the category defined as follows: objects are pairs (I, x)
where I is an open interval in R and x ∈ I. Morphisms (I, x) → (J, y) are
differentiable functions f : I → J such that f(x) = y.

Let Y be the (multiplicative) monoid R, considered as a category. Show
that the operation which sends an arrow f : (I, x)→ (J, y) to f ′(x), determines
a functor X → Y . On which basic fact of elementary Calculus does this rely?

Exercise 10 (“Abelianization”) Let Abgp be the category of abelian groups
and homomorphisms. For every group G the subgroup [G,G] generated by
all elements of form aba−1b−1 is a normal subgroup. G/[G,G] is abelian, and
for every group homomorphism φ:G → H with H abelian, there is a unique
homomorphism φ̄:G/[G,G]→ H such that the diagram

G
p

{{

φ

��

G/[G,G]
φ̄

// H

commutes. Show that this gives a functor: Grp→ Abgp.

Exercise 11 Convince yourself that the assignment C 7→ C/C gives rise to a
functor C → Cat.

Exercise 12 (This example will become important later.) Let C be a category
such that for every pair (X,Y) of objects the collection C(X,Y) of arrows from
X to Y is a set (such C is called locally small). Show that if C is locally small,
then there is a functor (the “Hom functor”) C(−,−): Cop × C → Set, assigning
to the pair (A,B) of objects of C, the set C(A,B).

Exercise 13 Suppose F : C → D is surjective on objects, that is, for each object
D in D there is an object C in C such that FC = D. Consider the following
three statements:

(i) Each morphism g in D can be written as Ff1 ◦ Ff2 ◦ . . . ◦ Ffn for some
morphisms f1, . . . , fn in C.

(ii) Each morphism g in D can be written Ff for some morphism f in C.

(iii) F is full.

Then (iii) ⇒ (ii) ⇒ (i). Show that none of these implications can be reversed:
that is, show that there are examples of functors which are surjective on objects
which have property (i), but not (ii), or property (ii), but not (iii).

Exercise 14 Show that a fully faithful functor reflects terminal objects.

13

3 Natural transformations and equivalences

3.1 Natural transformations

Fix two categories C and D. A crucial aspect of category theory is that we can
give the collection of functors from C to D the structure of a category as well.
The morphisms in this category are the natural transformations.

Definition 3.1 A natural transformation between two functors F,G: C → D
consists of a family of morphisms (µC :FC → GC)C∈C0 indexed by the collection
of objects of C, satisfying the following naturality condition: for every morphism
f :C → C ′ in C, the diagram

FC

Ff

��

µC // GC

Gf

��

FC ′
µC′
// GC ′

commutes in D (this means µC′ ◦ Ff = Gf ◦ µC ; the diagram above is called
the naturality square). We write µ = (µC)C∈C0 :F ⇒ G and we call µC the
component at C of the natural transformation µ.

It is not hard to see that if µ:F ⇒ G and ν:G ⇒ H, then we also have
a natural transformation νµ = (νCµC)C :F ⇒ H, and that this composition
operation has identities and is associative. Therefore there exists a functor
category [C,D] of functors from C to D and natural transformations between
them.

A natural transformation is called a natural isomorphism if it is an isomor-
phism in this functor category. This is equivalent to a simpler property:

Proposition 3.2 A natural transformation µ:F ⇒ G in [C,D] is a natural
isomorphism if and only if each component µC is an isomorphism.

Proof. Note that the identity natural transformation is the identity at each
component. Hence if µ:F ⇒ G has an inverse ν:G ⇒ F , then we have have
that each νC is the inverse of µC . Conversely, if each µC is an iso, then the
inverse (if it exist) must be defined by νC = µ−1

C . It remains to check that
ν, defined in this way, is actually a natural transformation, so satisfies the
naturality condition. But note that for each f :C → C ′ in C we have a diagram

FC GC FC

FC ′ GC ′ FC ′

µC

Ff

νC

Gf Ff

µC′ νC′

14

in which the outer rectangle and left hand square commute. Since µC is iso and
hence epi, the right hand square also commutes.

Proposition 3.3 Let C,D and E be categories. Then functor composition is
the object part of a functor

◦: [D, E]× [C,D]→ [C, E].

Proof. First of all, we have to define the action of ◦ on morphisms, that is, we
have to show how, given functors F,G: C → D and H,K:D → E and natural
transformations µ:F ⇒ G and µ:H ⇒ K, one can define a natural trans-
formation ν ∗ µ:HF ⇒ KG (this is called horizontal composition of natural
transformations; the composition of natural transformations in functor cate-
gories is often called vertical composition). This means that, given an object C
in C we have to define a map HFC → KGC. A priori, there are two candidates,
namely the the two composites along the outsides of the square

HFC HGC

KFC KGC.

HµC

νFC νGC

KµC

Fortunately, these composites are equal, because this square is the naturality
square for the natural transformation ν at the map µC :FC → GC. Therefore
we may define

(ν ∗ µ)C : = νGC ◦HµC = KµC ◦ νFC .

Some lengthy verifications are now in order, something we gladly leave to the
reader. (Exercise!)

3.2 Examples of natural transformations

a) Let M and N be two monoids, regarded as categories with one object as in
chapter 1. A functor F :M → N is then just the same as a homomorphism
of monoids. Given two such, say F,G:M → N , a natural transformation
F ⇒ G is (given by) an element n of N such that nF (x) = G(x)n for all
x ∈M ;

b) Let P and Q two preorders, regarded as categories. A functor P → Q
is a monotone function, and there exists a unique natural transformation
between two such, F ⇒ G, exactly if F (x) ≤ G(x) for all x ∈ P .

c) Let U : Grp→ Set denote the forgetful functor, and F : Set→ Grp the free
functor (see chapter 1). There are natural transformations ε:FU ⇒ 1Grp

and η: 1Set ⇒ UF .

15

Given a group G, εG takes the string σ = g1 . . . gn to the product g1 · · · gn
(here, the “formal inverses” g−1

i are interpreted as the real inverses in G!).

Given a set A, ηA(a) is the singleton string a.

d) Let i: Abgp → Grp be the inclusion functor and r: Grp → Abgp the
abelianization functor defined in example m) in chapter 1. There is
ε: ri⇒ 1Abgp and η: 1Grp ⇒ ir.

The components ηG of η are the quotient maps G → G/[G,G]; the com-
ponents of ε are isomorphisms.

e) Every class of arrows of a category C can be viewed as a natural transfor-
mation. Suppose S ⊆ C1. Let F (S) be the discrete category on S as in
the preceding example. There are the two functors dom, cod:F (S) → C,
giving the domain and the codomain, respectively. For every f ∈ S we
have f : dom(f) → cod(f), and the family (f |f ∈ S) defines a natural
transformation: dom⇒ cod.

f) Let A and B be sets. There are functors (−) × A: Set → Set and (−) ×
B: Set → Set. Any function f :A → B gives a natural transformation
(−)×A⇒ (−)×B.

g) Given categories C, D and an object D of D, there is the constant functor
∆D: C → D which assigns D to every object of C and 1D to every arrow
of C.
Every arrow f :D → D′ gives a natural transformation ∆f : ∆D ⇒ ∆D′

defined by (∆f)C = f for each C ∈ C0.

h) Let P(X) denote the power set of a set X: the set of subsets of X. The
powerset operation can be extended to a functor P: Set → Set. Given a
function f :X → Y define P(f) by P(f)(A) = f [A], the image of A ⊆ X
under f .

There is a natural transformation η: 1Set ⇒ P such that ηX(x) = {x} ∈
P(X) for each set X.

There is also a natural transformation µ:PP ⇒ P. Given A ∈ PP(X),
so A is a set of subsets of X, we take its union

⋃
(A) which is a subset of

X. Put µX(A) =
⋃

(A).

3.3 Equivalence of categories

As will become clear in the following chapters, equality between objects plays
only a minor role in category theory. The most important categorical notions
are only defined “up to isomorphism”. This is in accordance with mathematical
practice and with common sense: just renaming all elements of a group does
not really give you another group.

16

However, once we also consider functor categories, it turns out that there is
another relation of “sameness” between categories, weaker than isomorphism of
categories, and yet preserving all “good” categorical properties. Isomorphism
of categories C and D requires the existence of functors F : C → D and G:D → C
such that FG = 1D and GF = 1C ; but bearing in mind that we can’t really say
meaningful things about equality between objects, we may relax the requirement
by just asking that FG is isomorphic to 1D in the functor category [D,D] (and
the same for GF); doing this we arrive at the notion of equivalence of categories,
which is generally regarded as the proper notion of sameness for categories.

Definition 3.4 A functor F : C → D is called an equivalence if there is a functor
G:D → C such that GF is naturally isomorphic to 1C and FG is naturally
isomorphic to 1D. The functor G is of course also an equivalence and called a
pseudo-inverse of F . If such an equivalence F exists, we call the categories C
and D equivalent, something we write as C ' D.

As a simple example of an equivalence of categories, take a preorder P . Let
Q be the quotient of P by the equivalence relation which contains the pair (x, y)
iff both x ≤ y and y ≤ x in P . Let π:P → Q be the quotient map. Regarding
P and Q as categories, π is a functor, and in fact an equivalence of categories,
though not in general an isomorphism.

For recognising equivalences the following result is often useful. It requires
a definition.

Definition 3.5 Let F : C → D be a functor. We say that F is essentially sur-
jective if for each object D in D there is an object C in C such that FC ∼= D.

Theorem 3.6 A functor F : C → D is an equivalence if and only if it is full,
faithful and essentially surjective.

Proof. If F : C → D has a pseudo-inverse G:D → C, we have for each object D
in D that FGD ∼= D, so F is essentially surjective.

Furthermore, if we have a natural isomorphism µ: 1 ⇒ GF , which means
that for each pair of objects A,B in C there is an operation

IA,B :D(FA,FB)→ C(A,B)

obtained by sending g:FA → FB to µ−1
B ◦ Gg ◦ µA. Naturality of µ gives us

that IA,B ◦ FA,B = 1, so FA,B is injective and equivalences like F and G are
faithful.

To show that FA,B ◦ IA,B = 1, we take a map g:FA→ FB and we have to
show Ff = g where f is the unique map filling

17

A GFA

B GFB

µA

f Gg

µB

But because µ is a natural isomorphism, we must have that Gg = GFf , so we
have g = Ff , because G, as an equivalence, is faithful.

Conversely, suppose that F : C → D is full, faithful and essentially surjective.
Then because F is essentially surjective, there is for each object D in D there
is an object GD in C together with an isomorphism νD:D ∼= FGD. Then
because F is full and faithful, there is for each g:D → D′ in D a unique map
Gg:GD → GD′ making

D FGD

D′ FGD′

νD

g FGg

νD′

From this it follows that G is a functor and ν a natural isomorphism 1D ⇒ FG.

It remains to show that there is a natural isomorphism µ: 1 ⇒ GF . To
construct an isomorphism µC :C ∼= GFC it suffices to construct an isomorphism
FC ∼= FGFC, because F is full and faithful (see Exercise 12 below): so we
choose µC such that FµC = νFC .

We still have to prove that µ is natural, so let f :C → C ′ be any morphism
in C and consider the naturality square:

C GFC

C ′ GFC ′.

µC

f GFf

µC′

To see that it commutes, it suffices to show that its image under F commutes
(F is faithful). But its F -image is

FC GFC

FC ′ GFC ′,

νFC

Ff FGFf

νFC′

which commutes because ν is natural.

3.4 Exercises

Exercise 15 There are at least two ways to associate a category to a set X:
let F (X) be the category with as objects the elements of X, and as only arrows

18

identities (a category of the form F (X) is called discrete; and G(X) the category
with the same objects but with exactly one arrow fx,y:x → y for each pair
(x, y) of elements of X (We might call G(X) an indiscrete category). Check
that F and G can be extended to functors: Set→ Cat and describe the natural
transformation µ:F ⇒ G which has, at each component, the identity function
on objects.

Exercise 16 Show that there is an “evaluation functor” C × [C,D]→ D which
on the object level sends an object C in C and a functor F : C → D to the object
FC in D.

Exercise 17 Suppose that F,G,H are functors such that H = G ◦ F . Show
that if two of F,G,H are equivalences, then so is the third. Deduce that “being
equivalent categories” is an equivalence relation on the collection of all cate-
gories.

Exercise 18 A category in which every arrow is invertible is called a groupoid.
Show that a category is equivalent to a discrete category if and only if it is a
groupoid and a preorder.

Exercise 19 A category is called skeletal if any two isomorphic objects are
identical. Show that every category is equivalent to a skeletal category.

Exercise 20 Let F : C → D be an equivalence. Show that any two pseudo-
inverses of F are naturally isomorphic. (This is often expressed as: pseudo-
universes are unique up to natural isomorphism.)

19

4 Limits and colimits

4.1 Limits

In what follows, a functor F : C → D will also be called a diagram in D of type
C, and C is the shape or index category of the diagram. (In this context the
category C is almost always assumed to be small.)

Note that if D ∈ D is some object, there is always a diagram of shape C
in D, obtained by sending every object in C to D and every arrow in C to the
identity on D. We will call this the constant diagram of shape C at D and we
will denote it by ∆D: C → D. If g:D → D′ is a morphism, then this induces a
natural transformation ∆g: ∆D ⇒ ∆D′ with (∆g)C = g. In fact, ∆ can be seen
as a functor ∆:D → [C,D].

Definition 4.1 Fix a functor F : C → D. A cone for the diagram F consists
of an object D of D together with a natural transformation µ: ∆D ⇒ F . In
other words, we have a family (µC :D → F (C)|C ∈ C0), and the naturality
requirement in this case means that for every arrow f :C → C ′ in C,

D
µC

||

µC′

""

F (C)
F (f)

// F (C ′)

commutes in D (this diagram explains, I hope, the name “cone”). Let us denote
the cone by (D,µ). D is called the vertex of the cone.

A map of cones (D,µ)→ (D′, µ′) is a map g:D → D′ such that µ′ ◦∆g = µ.
Using that ∆ is a functor, one can easily see that there is a category Cone(F)
which has as objects the cones for F and as morphisms maps of cones.

Definition 4.2 A limiting cone for F is a terminal object in Cone(F). Since
terminal objects are unique up to unique isomorphism, as we have seen, any
two limiting cones are isomorphic in Cone(F) and in particular, their vertices
are isomorphic in D.

Let us see what it means to be a limiting cone, in some simple, but important
cases.

4.1.1 Terminal objects, again

A limiting cone for the unique functor !: 0 → D (0 is the empty category) “is”
a terminal object in D. For every object D of D determines, together with the
empty family, a cone for !, and a map of cones is just an arrow in D. So Cone(!)
is isomorphic to D.

20

4.1.2 Binary products

Let 2 be the discrete category with two objects x, y. A functor 2→ D is just a
pair 〈A,B〉 of objects of D, and a cone for this functor consists of an object C

of D and two maps

C
µA //

µB
��

A

B

since there are no nontrivial arrows in 2.

(C, (µA, µB)) is a limiting cone for 〈A,B〉 iff the following holds: for any
object D and arrows f :D → A, g:D → B, there is a unique arrow h:D → C
such that

D

A C B

f g
h

µA µB

commutes. In other words, there is, for any D, a 1-1 correspondence between

maps D → C and pairs of maps

D

��

A B

This is the property of

a product; a limiting cone for 〈A,B〉 is therefore called a product cone, and
usually denoted:

A×B
πA

||

πB

##
A B

The arrows πA and πB are called projections.

4.1.3 Equalizers

Let 2̂ denote the category x
a //

b
// y . A functor 2̂→ D is the same thing as a

parallel pair of arrows A
f
//

g
// B in D; I write 〈f, g〉 for this functor. A cone

for 〈f, g〉 is:

D
µA

��

µB

A
f

//

g
// B

But µB = fµA = gµA is already defined from µA, so giving a cone is the same
as giving a map µA:D → A such that fµA = gµA. Such a cone is limiting iff

21

for any other map h:C → A with fh = gh, there is a unique k:C → D such
that h = µAk.

We call µA, if it is limiting, an equalizer of the pair f, g, and the diagram

D
µA // A

f
//

g
// B an equalizer diagram.

In Sets, an equalizer of f, g is isomorphic (as a cone) to the inclusion of
{a ∈ A|f(a) = g(a)} into A. In categorical interpretations of logical systems,
equalizers are used to interpret equality between terms.

4.1.4 Pullbacks

Let J denote the category

y

b

��
x

a
// z

A functor F : J → D is specified by

giving two arrows in D with the same codomain, say f :X → Z, g:Y → Z.
A limit for such a functor is given by an object W together with projections

W
pY //

pX

��

Y

X

satisfying fpX = gpY , and such that, given any other pair of

arrows:

V
r //

s

��

Y

X

with gr = fs, there is a unique arrow V →W such that

V

s

��

r

((
W

pX

��

pY
// Y

g

��

X
f
// Z

commutes.

The diagram

W

pX

��

pY // Y

g

��

X
f
// Z

is called a pullback diagram. In Set, the pullback cone for f, g is isomorphic to

{(x, y) ∈ X × Y |f(x) = g(y)}

22

with the obvious projections.

4.1.5 Some more terminology

Definition 4.3 We say that a category C has limits of shape I if a limiting
cone exists for each diagram F : I → C. If a category C has limits of shape I for
all small categories I, we say that C is complete. If a category C has limits of
shape I for all finite categories I (which means: there are only finitely many
objects and arrows in I), then we say that D is finitely complete (or lex (left
exact), or cartesian).

So, for instance, we say that a category C has binary products (equalizers,
pullbacks) iff every functor 2 → C (2̂ → C, J → C, respectively) has a limiting
cone.

Definition 4.4 Let (C, µ) be a limiting cone for a diagram M : I → C. We say
that this limit is preserved by a functor F : C → D if (FC,Fµ = (F (µI)|I ∈ I0))
is a limiting cone for FM in D. We say that F : C → D preserves limits of shape
I if it preserves any limiting cone for any diagram I → C; and we say that
it preserves small (or finite) limits if it preserves limits of any small (or finite)
shape I.

So, a functor F : C → D preserves binary products if for every product dia-

gram

A×B
πA

��

πB // B

A

its F -image

F (A×B)

F (πA)

��

F (πB)
// F (B)

F (A)

is again a product

diagram. Similarly for equalizers and pullbacks.

4.2 Colimits

The dual notion of limit is colimit. Given a functor F : E → C there is clearly a
functor F op: Eop → Cop which does “the same” as F . We say that a colimiting
cocone for F is a limiting cone for F op.

So: a cocone for F : E → C is a pair (ν,D) where ν:F ⇒ ∆D and a colimiting
cocone is an initial object in the category Cocone(F).

Examples

i) a colimiting cocone for !: 0→ C “is” an initial object of C

23

ii) a colimiting cocone for 〈A,B〉: 2 → C is a coproduct of A and B in C:
usually denoted A + B or A t B; there are coprojections or coproduct
inclusions

A
νA

##

B
νB
// A tB

with the property that, given any pair of arrows A
f→ C, B

g→ C there is a

unique map

[
f
g

]
:AtB → C such that f =

[
f
g

]
νA and g =

[
f
g

]
νB

iii) a colimiting cocone for A
f
//

g
// B (as functor 2̂→ C) is given by a map

B
c→ C satisfying cf = cg, and such that for any B

h→ D with hf = hg

there is a unique C
h′→ D with h = h′c. c is called a coequalizer for f and

g; the diagram A //
// B // C a coequalizer diagram.

In Set, the coproduct of X and Y is the disjoint union ({0}×X)∪({1}×Y)

of X and Y . The coequalizer of X
f
//

g
// Y is the quotient map Y →

Y/ ∼ where ∼ is the equivalence relation generated by

y ∼ y′ iff there is x ∈ X with f(x) = y and g(x) = y′

iv) The dual notion of pullback is pushout. A pushout diagram is a colimiting

cocone for a functor Γ → C where Γ is the category

x

��

// y

z

. Such a

diagram is a square

X

g

��

f
// Y

a

��

Z
b
// P

which commutes and such that, given

Y

α

��

Z
β
// Q

with αf = βg, there

is a unique P
p→ Q with α = pa and β = pb. In Set, the pushout of

X
f→ Y and X

g→ Z is the coproduct Y t Z where the two images of X
are identified:

24

X

Z

X

X

Y

X
H
HHj

��
�*

�
��*

HHHj

The reader is encouraged to find , in terms of X
f→ Y and X

g→ Z, a
formal definition of a relation R on Y tZ such that the pushout of f and
g is Y t Z/ ∼, ∼ being the equivalence relation generated by R.

Also the definitions in Section 3.2.5 can be dualised: for instance, a category
C is cocomplete if it has all colimits for diagrams I → C with I small.

The categories Set, Top, Pos, Mon, Grp, Grph, Rng, Cat . . . are all both
complete and cocomplete. (This is not supposed to be obvious; it is supposed
to be true.)

4.3 Exercises

Exercise 21 Show that a full and faithful functor reflects the property of being
a terminal (or initial) object.

Exercise 22 Show that every equalizer is a monomorphism.

Exercise 23 If E
e // X

f
//

g
// Y is an equalizer diagram, show that e is an

isomorphism if and only if f = g.

Exercise 24 Show that in Set, every monomorphism fits into an equalizer di-
agram.

Exercise 25 Let

A

a

��

b // B

f

��

X
g
// Y

25

a pullback diagram with f mono. Show that a is also mono. Also, if f is iso
(an isomorphism), so is a.

Exercise 26 Given two commuting squares:

A

a

��

b // B

f

��

c // C

d

��

X
g
// Y

h
// Z

a) if both squares are pullback squares, then so is the composite square

A

a

��

cb // C

d

��

X
hg
// Z

b) If the right hand square and the composite square are pullbacks, then so
is the left hand square.

Exercise 27 f :A→ B is a monomorphism if and only if

A

1A

��

1A // A

f

��

A
f
// B

is a pullback diagram.

A monomorphism f :A→ B which fits into an equalizer diagram

A
f
// B

g
//

h
// C

is called a regular mono.

Exercise 28 If

A

b

��

a // X

g

��

B
f
// Y

is a pullback and g is regular mono, so is b.

26

Exercise 29 If f is regular mono and epi, f is iso. Every split mono is regular.

Exercise 30 Give an example of a category in which not every mono is regular.

Exercise 31 In Grp, every mono is regular [This is not so easy].

Exercise 32 Characterize the regular monos in Pos.

Exercise 33 If a category D has binary products and a terminal object, it
has all finite products, i.e. limiting cones for every functor into D from a finite
discrete category.

Exercise 34 Suppose C has binary products and suppose for every ordered pair

(A,B) of objects of C a product cone

A×B
πB

��

πA // A

B

has been chosen.

a) Show that there is a functor: C × C −×−→ C (the product functor) which
sends each pair (A,B) of objects to A×B and each pair of arrows (f :A→
A′, g:B → B′) to f × g = 〈fπA, gπB〉.

b) From a), there are functors:

C × C × C
(−×−)×−

//

−×(−×−)
// C

sending (A,B,C) to
(A×B)× C
A× (B × C)

Show that there is a natural trans-

formation a = (aA,B,C |A,B,C ∈ C0) from (− × −) × − to − × (− × −)
such that for any four objects A,B,C,D of C:

((A×B)× C)×D

aA,B,C×1D

��

aA×B,C,D
// (A×B)× (C ×D)

aA,B,C×D

��

(A× (B × C))×D

aA,B×C,D
))

A× (B × (C ×D))

A× ((B × C)×D)

1A×aB,C,D

55

commutes (This diagram is called “MacLane’s pentagon”).

27

Exercise 35 If a category C has equalizers, it has all finite equalizers: for every
category E of the form

X

f1 //

fn

//

... Y

every functor E → C has a limiting cone.

Exercise 36 Suppose F : C → D preserves equalizers (and C has equalizers) and
reflects isomorphisms. Then F is faithful.

Exercise 37 Let C be a category with finite limits. Show that for every object
C of C, the slice category C/C (example j) of 1.1) has binary products: the
vertex of a product diagram for two objects D → C, D′ → C is D′′ → C where

D′′

��

// D

��

D′ // C

is a pullback square in C.

Exercise 38 Is the terminology “coproduct inclusions” correct? That is, it
suggests they are monos. Is this always the case?

Formulate a condition on A and B which implies that νA and νB are monic.

Exercise 39 Call an arrow f a stably regular epi if whenever a

��

//

f

��//

is a

pullback diagram, the arrow a is a regular epi. Show: in Pos, X
f→ Y is a stably

regular epi if and only if for all y, y′ in Y :

y ≤ y′ ⇔ ∃x ∈ f−1(y)∃x′ ∈ f−1(y′).x ≤ x′

Show by an example that not every epi is stably regular in Pos.

Exercise 40 In Grp, every epi is regular.

Exercise 41 Characterize coproducts in Abgrp.

28

5 Complete categories

Recall from the previous section that a category is called (co)complete if it has
(co)limits of type E for all small E . We also claimed that categories Set, Top,
Pos, Mon, Grp, Grph, Rng, Cat . . . are all both complete and cocomplete. We
will not prove that here; instead, we will provide some useful tools for proving
statements of that kind. Also, we will establish some properties of complete
categories.

Note, by the way, that limits over large (i.e. not small) diagrams need not
exist in these examples. For example in Set, there is a limiting cone for the
identity functor Set→ Set (its vertex is the empty set), but not for the constant
functor ∆A: C → Set if C is a large discrete category and A has more than one
element.

5.1 Limits by products and equalizers

To prove that a category is complete it suffices to prove that a category has small
products and equalizers. (Here small is supposed to include empty, so small
products include the empty product, i.e. a terminal object 1.) For instance, in
Top, the product of a set (Xi | i ∈ I) of topological spaces is the set

∏
i∈I Xi

with the product topology; the equalizer of two continuous maps X
f
//

g
// Y

is the inclusion X ′ ⊆ X where X ′ = {x ∈ X | f(x) = g(x)} with the subspace
topology from X. Hence Top is complete.

In Set, every small diagram has a limit; given a functor F : E → Set with E
small, there is a limiting cone for F in Set with vertex

{(xE)E∈E0 ∈
∏
E∈E0

F (E) | ∀E f→ E′ ∈ E1(F (f)(xE) = xE′)}

So in Set, limits are equationally defined subsets of suitable products. This
holds in any category:

Proposition 5.1 If C has all small products and equalizers, then C has all small
limits.

Proof. Given a set I and an I-indexed family of objects (Ai|i ∈ I) of C, we
denote the product by

∏
i∈I Ai and projections by πi:

∏
i∈I Ai → Ai; an arrow

f :X →
∏
i∈I Ai which is determined by the compositions fi = πif :X → Ai, is

also denoted (fi|i ∈ I).

Now given E → C with E0 and E1 sets, we construct

E
e //

∏
i∈E0 F (i)

(πcod(u)|u∈E1)
//

(F (u)πdom(u)|u∈E1)
//
∏
u∈E1 F (cod(u))

29

in C as an equalizer diagram. The family (µi = πie:E → F (i)|i ∈ E0) is a
natural transformation ∆E ⇒ F because, given an arrow u ∈ E1, say u: i → j,
we have that

E
πie

}}

πje

!!

F (i)
F (u)

// F (j)

commutes since F (u)πie = F (u)πdom(u)e = πcod(u)e = πje.

So (E,µ) is a cone for F , but every other cone (D, ν) for F gives a map
d:D →

∏
i∈E0 F (i) equalizing the two horizontal arrows; so factors uniquely

through E.

Remark 5.2 In the statement of this proposition “small” can be replace by
“finite” (or “countable”, or . . .): if C has all finite (countable) products and
equalizers, then C has all finite (countable) limits. And, of course, it implies the
dual statement: if C has all small coproducts and coequalizers, then C has all
small colimits.

For proving that a category is finitely complete the following lemma is often
useful.

Lemma 5.3 If a category D has a terminal object and pullbacks, it has binary
products and equalizers.

Proof. Let 1 be the terminal object inD; given objectsX and Y , if

C

pY

��

pX // X

��

Y // 1

is a pullback diagram, then

C
pX //

pY

��

X

Y

is a product cone.

Given a product cone

A×B πA //

πB

��

A

B

and maps

X
f
//

g

��

A

B

we write

X
〈f,g〉→ A × B for the unique factorization through the product. Write also

δ:Y → Y × Y for 〈1Y , 1Y 〉.

30

Now given f, g:X → Y , if

E

��

e // X

〈f,g〉
��

Y
δ
// Y × Y

is a pullback diagram, then E
e // X

f
//

g
// Y is an equalizer diagram. This

proves the lemma.

Corollary 5.4 The following are equivalent for a category C:

1. C is finitely complete.

2. C has all finite products and equalizers.

3. C has all pullbacks and a terminal object.

5.2 Properties of complete categories

Theorem 5.5 If D is complete, then so is [C,D] for any category C. More
generally, if D has limits of shape I, then so does [C,D] for any category C.

Note that the category C can be arbitrary (in particular, it need not be
complete).

Proof. The slogan is: (co)limits in functor categories are “computed pointwise”.
That is, let F : E → [C,D] be a diagram in [C,D]. Fixing an object C ∈ C0 there
is a functor FC : E → D, given by FC(E) = F (E)(C) and for f :E → E′ in E ,
FC(f) = F (f)C :F (E)(C)→ F (E′)(C).

Since D is complete, every FC has a limiting cone (XC , µC) in D. Now if

C
g→ C ′ is a morphism in C, the collection of arrows

{XC
(µC)E→ F (E)(C)

F (E)(g)→ F (E)(C ′) = FC′(E) |E ∈ E0}

is a cone for FC′ with vertex XC , since for any f :E → E′ we have F (f)C′ ◦
F (E)(g)◦(µC)E = F (E′)(g)◦F (f)C◦(µC)E (by naturality of F (f)) = F (E′)(g)◦
(µC)E′ (because (XC , µC) is a cone).

Because (XC′ , µC′) is a limiting cone for FC′ , there is a unique arrowXg:XC →
XC′ in D such that F (E)(g)◦(µC)E = (µC′)E◦Xg for all E ∈ E0. By the unique-
ness of these arrows, we have an object X of [C,D], and arrows νE :X → F (E)
for all E ∈ E0, and the pair (X, ν) is a limiting cone for F in [C,D].

We leave it to the reader to check the remaining details.

31

Proposition 5.6 Let F : C → D be an equivalence and I be a category. Then
F preserves and reflects limits of shape I.

Proof. Note that if F : C → D is a functor and M : I → C is a diagram, then F
induces a functor

F̂ : Cone(M)→ Cone(FM).

Since the morphisms in these categories of cones are certain morphisms in C and
D, respectively, and the functor F̂ acts by simply applying F , then functor F̂
will be full and faithful, whenever F is. Since full and faithful functors reflect
the terminal object (exercise!), it follows that whenever F is full and faithful,

F̂ reflects the terminal object; in other words, full and faithful functors reflect
limits.

If F is an equivalence with pseudo-inverse G, then F̂ is also an equivalence
with pseudo-inverse Ĝ. Since equivalences like F̂ preserve the terminal object,
it follows that F preserves limits.

Corollary 5.7 Suppose C and D are equivalent categories. If C is complete,
then so is D. More generally, if C has limits of shape I, then so does D.

To finish this section a little theorem by Peter Freyd which says that every
small, complete category is a complete preorder:

Proposition 5.8 Suppose C is small and complete. Then C is a preorder.

Proof. If not, there are objects A,B in C such that there are two distinct
maps f, g:A → B. Since C1 is a set and C complete, the product

∏
h∈C1 B

exists. Arrows k:A →
∏
h∈C1 B are in 1-1 correspondence with families of

arrows (kh:A→ B |h ∈ C1). For every subset X ⊆ C1 define such a family by:

kh =

{
f if h ∈ X
g else

This gives an injective function from 2C1 into C(A,
∏
h∈C1 B) hence into C1,

contradicting Cantor’s theorem in set theory.

5.3 Exercises

Exercise 42 Take one of your favourite categories (Top, Pos, Rng, Mon, Grp,
Grph, Cat) and show it is both complete and cocomplete.

Exercise 43 Show that if C is complete, then F : C → D preserves all limits if
F preserves products and equalizers. This no longer holds if C is not complete!
That is, F may preserve all products and equalizers which exist in C, yet not
preserve all limits which exist in C.

32

Exercise 44 Suppose a category C has limits of shape I. Show that the oper-
ation which assigns each diagram I → C to its limit in C in part of a functor

[I, C]→ C.

Exercise 45 Let C, D and E be categories. Showing that the following cate-
gories are isomorphic:

[E , [C,D]] ∼= [E × C,D] ∼= [C, [E ,D]].

Use this and the previous exercise to give a more elegant proof of Theorem 4.5.

Exercise 46 Show that a full and faithful functor reflects the property of being
a terminal (or initial) object. Deduce that equivalences preserve the terminal
(or initial) object.

33

6 Cartesian closed categories

Many set-theoretical constructions are completely determined (up to isomor-
phism, as always) by their categorical properties in Set. We are therefore
tempted to generalize them to arbitrary categories, by taking the character-
istic categorical property as a definition. Of course, this procedure is not really
well-defined and it requires sometimes a real insight to pick the ‘right’ categori-
cal generalization. For example, the category of sets has very special properties:

• f :X → Y is mono if and only if fg = fh implies g = h for any two maps
g, h: 1→ X, where 1 is a terminal object (we say 1 is a generator);

• objects X and Y are isomorphic if there exist monos f :X → Y and
g:Y → X (the Cantor-Bernstein theorem);

• every mono X
f→ Y is part of a coproduct diagram

X
f

Z
g
// Y

And if you believe the axiom of choice, there is its categorical version:

• Every epi is split

None of these properties is generally valid, and categorical generalizations based
on them are usually of limited value.

In this chapter we focus on a categorical generalization of a set-theoretical
concept which has proved to have numerous applications: an exponential as the
generalization of “function space”.

6.1 Exponentials

Throughout this section we assume we are working in a category C with chosen
finite products: that is, we have chosen a product diagram for every pair of
objects of C, as well as a distinguished terminal object 1 in C.

Definition 6.1 Suppose X and Y are objects in C. An exponential is an object
XY in C together with a morphism ev:XY ×Y → X (the evaluation) such that
for each objectA and morphism h:A×Y → X there is a unique mapH:A→ XY

making

34

XY × Y X

A× Y

ev

h
H×1Y

commute. The latter condition can also be formulated as: for each object A the
operation

HomC(A,X
Y)→ HomC(A× Y,X):H 7→ ev ◦ (H × 1Y)

is a bijection. Morphisms like h and H which correspond to each other under
this bijection are called each other’s transposes.

Definition 6.2 A category C is called cartesian closed or a ccc if it has finite
products, and for every pair of objects X and Y in C an exponential XY exists.

Examples

a) A preorder (or partial order) is cartesian closed if it has a top element 1,
binary meets x∧y and for any two elements x, y an element x→y satisfying
for each z:

z ≤ x→y iff z ∧ x ≤ y

b) Set is cartesian closed, with XY being the set of functions f :Y → X and
the evaluation map XY ×Y → X being the map which sends a pair (f, y)
to f(y).

c) Pos and Preorder are cartesian closed. The exponent Y X is the set of
all monotone maps X → Y , ordered pointwise (f ≤ g iff for all x ∈ X,
fx ≤ gx in Y);

d) 1 is cartesian closed; 0 isn’t (why?);

e) A monoid is never cartesian closed unless it is trivial. However, if from
the definition of ‘cartesian closed’ one would delete the requirement that
it has a terminal object, an interesting class of ‘cartesian closed’ monoids
exists: the C-monoids in the book “Higher Order Categorical Logic” by
J. Lambek and Ph. Scott.

f) Top, Grp, Abgp and Mon are not cartesian closed. We will need a bit
more theory to see why.

Proposition 6.3 Cat is cartesian closed with the functor category [C,D] acting
as the exponential DC.

35

Proof. First of all, we need to define a functor

ev: [C,D]× C → D

which is defined on objects by sending a pair (F,C) consisting of a functor
F : C → D and an object C in C to FC. On arrows it is defined by sending a
natural transformation σ:F ⇒ G and a morphism f :C → C ′ to either composite
around the commutative square

FC GC

FC ′ GC ′.

σC

Ff Gf

σC′

We leave the verification that ev is indeed a functor as an exercise.

It remains to check that for each category E the operation

Φ: HomCat(E , [C,D])→ HomCat(E × C,D):H 7→ ev(H × 1C)

defines a bijection between two sets of functors.

To see that Φ is surjective, suppose we are given a functor F : E × C → D.
Then define a functor H: E → [C,D] by letting for each object E in E the functor
H(E): C → D be defined by sending C to F (E,C) and f :C → C ′ to F (1E , f).
In addition, if g:E → E′ is a morphism in E , then we can define a natural
transformation H(g):H(E)⇒ H(E′) by sending each C in C to the morphism
F (g, 1C):F (E,C) → F (E′, C) in D. This is a natural transformation because
for each morphism f :C → C ′ we have (g, f) = (1E′ , f)(g, 1C) = (g, 1C′)(1E , f)
and hence that

F (E,C) F (E,C ′)

F (E′, C) F (E′, C ′)

H(E)(f)

H(g)C H(g)C′

H(E′)(f)

commutes. In fact, we can think of Ψ(F) = H as defining an operation

Ψ: HomCat(E × C,D)→ HomCat(E , [C,D]).

We leave the verification that Φ and Ψ are each other’s inverses to the reader
(feel free to use the Bifunctor Lemma, see exercise 4, at this point).

Remark 6.4 In a way, the definition of a natural transformation is precisely
what makes the previous proposition work and for that reason we can regard it
as an explanation for why natural transformations are defined the way they are.
First of all, note that the objects in a category E are in 1-to-1 correspondence
with the arrows 1→ E . Similarly, let I be the category which looks like this:

36

0 1,

and let εi: 1→ I be the functor which sends the unique object in 1 to the object
i in I. Then the arrows from an object A to an object B in a category E are
in 1-to-1 correspondence with the functors F : I → E such that Fε0 = A and
Fε1 = B.

So if the exponential DC exists, its objects are in 1-to-1 correspondence with
functors 1→ DC , which are in 1-to-1 correspondence with functors C ∼= C×1→
D. So the objects of the category DC must correspond 1-to-1 with functors
C → D, which means we cannot really go wrong with defining its objects to be
functors C → D.

Similarly, if F,G are functors C → D then morphisms from F to G in DC
must correspond 1-to-1 with functors S: I → DC with Sε0 = F and Sε1 = G.
But such functors S correspond to functors σ: C×I→ D with σ(C×ε0) = F and
σ(C×ε1) = G (see exercise 3 below). Using the Bifunctor Lemma (see exercise 4
below) one can prove that these correspond to natural transformations F ⇒ G.

In the remainder of this subsection we will explore some of the functoriality
properties of the exponential.

Definition 6.5 An object X in a category C with finite products is called
exponentiable if the exponential Y X exists for each object Y .

Proposition 6.6 If X is an exponentiable object in a category C, then the op-
eration Y 7→ Y X is the object part of an endofunctor (−)X on C and evY :Y X×
X → Y is the component at Y of a natural transformation ev: (−)X ×X ⇒ 1C.

Proof. If f :Y → Y ′ is a morphism in C, then the universal property of the
exponential (Y ′)X tells us that there is a unique map fX making

Y X ×X Y

(Y ′)X ×X Y ′

evY

fX×1X f

evY ′

commute. From the uniquess part of the statement functoriality (1X = 1 and
gXfX = (gf)X) follows. In addition, the commutativity of the square above
tells us that we have defined a natural transformation ev: (−)X ×X ⇒ 1C .

In a way this is only the beginning: see exercises 5 and 6 below.

37

6.2 Natural numbers object

Dedekind observed, that in Set, the set N is characterized by the following

property: given any set X, any element x ∈ X and any function X
f→ X, there

is a unique function F :N→ X such that F (0) = x and F (x+ 1) = f(F (x)).

Lawvere took this up, and proposed this categorical property as a definition
(in a more general context) of a “natural numbers object” in a category.

Definition 6.7 In a category C with terminal object 1, a natural numbers ob-

ject is a triple (0, N, S) where N is an object of C and 1
0→ N , N

S→ N arrows
in C, such that for any other such diagram

1
x // X

f
// X

there is a unique map φ:N → X making

1
0 //

x
��

N
S //

φ

��

N

φ

��

X
f
// X

commute.

Of course we think of 0 as the zero element, and of S as the successor map. The
defining property of a natural numbers object enables one to “do recursion”.

Definition 6.8 Let C be a ccc with natural numbers object (0, N, S). We say
that a number-theoretic function F :Nk → N is represented by an arrow f :Nk →
N if for any k-tuple of natural numbers n1, . . . nk, the diagram

1
0 //

0
&&

N
〈Sn1 ,...,Snk 〉

// Nk

f

��

N
SF (n1,...,nk)

// N

commutes.

The following functions are representable in any ccc with a natural numbers
object:

• Addition.

• Multiplication.

38

• Exponentiation.

• . . .

(For this, we refer to the exercises 7 and 8.)

One could ask: what is the class of those numerical functions (that is, func-
tions Nk → N) that are representable in every ccc with natural numbers ob-
ject? The answer is: the representable functions are precisely the so-called
ε0-recursive functions from Proof Theory; this is a proper subclass of the set of
all computable functions. This was essentially shown by Gödel in 1958.

6.3 Exercises

Exercise 47 Show that in a ccc, there are natural isomorphisms 1X ∼= 1; (Y ×
Z)X ∼= Y X × ZX ; (Y Z)X ∼= Y Z×X .

Exercise 48 If a ccc has coproducts, we have X×(Y +Z) ∼= (X×Y)+(X×Z)
and Y Z+X ∼= Y Z × Y X .

Exercise 49 In a ccc, prove that the transpose of a composite Z
g→W

f→ Y X

is

Z ×X g×1X−→ W ×X f̃→ Y

if f̃ is the transpose of f .

Exercise 50 (Bifunctor lemma) Suppose C, D, E are categories, and we are
given:

1. For each pair of objects C in C and D in D an object F0(C,D) in E ;

2. For each object C ∈ C a functor FC :D → E satisfying FC(D) = F0(C,D)
for each object D in D;

3. For each object D ∈ D a functor FD: C → E satisfying FD(C) = F0(C,D)
for each object C in C;

such that for each pair of morphisms f :C → C ′ in C and g:D → D′ in D we
have a commutative square

F0(C,D) F0(C ′, D)

F0(C,D′) F0(C ′, D′)

FD(f)

FC(g) FC′ (g)

FD′ (f)

39

in E .

Show that there is a unique functor F : C×D → E whose operation on objects
is F0, while F (1C , g) = FC(g) and F (f, 1D) = FD(f) for each pair of arrows
f :C → C ′ in C and g:D → D′ in D.

Exercise 51 An object X in a category C with finite products is called expo-
nentiating if the exponential XY exists for each object Y in C. Show that if
Y is exponentiating, the assignment Y 7→ XY is the object part of a functor
Cop → C.

Exercise 52 Show that for every ccc C there is a functor Cop×C → C, assigning
Y X to (X,Y).

Hint: Use the previous two exercises as well as Proposition 5.6.

Exercise 53 Let A be the unique function making

1 N N

NN NN

S

A A

SN

commute. Show that the addition function is represented by the transpose of
A.

Hint: Recall that addition is the only function satisfying 0 + n = n and
(Sn) +m = S(n+m) for all natural numbers n,m.

Exercise 54 Show that multiplication is representable.

Hint: Use the previous exercise both for its result and for inspiration.

40

7 Presheaves

In category theory an important role is played by the category of presheaves on
a small category C.

Definition 7.1 Let C be a small category. The category of presheaves on C is
the functor category

[Cop,Sets],

so the category of contravariant functors from C to Sets (the presheaves on C)
and natural transformations between. Other notations that are used for the
category of presheaves are SetC

op

and Ĉ.

We will see in this and the next section that a category of presheaves Ĉ
has many properties that make it similar to the category of sets (it is cartesian
closed and both complete and cocomplete, for instance); moreover, the category

C embeds into Ĉ via the important Yoneda embedding. This will prove, in
particular, that any small category embeds into one which is both complete and
cocomplete.

7.1 Examples and first properties

Before we delve into the properties of a category of presheaves, let us first point
out that you are probably already aware of a few examples.

Examples of presheaf categories

1. A first example is the category of presheaves on a monoid (a one-object
category) M . Such a presheaf is nothing but a set X together with a
right M -action, that is: we have a map X ×M → X, written x, f 7→ xf ,
satisfying xe = x (for the unit e of the monoid), and (xf)g = x(fg). There
is only one representable presheaf.

2. The category of directed graphs and graph morphisms is a presheaf cate-
gory: it is the category of presheaves on the category with two objects e
and v, and two non-identity arrows σ, τ : v → e. For a presheaf X on this
category, X(v) can be seen as the set of vertices, X(e) the set of edges,
and X(σ), X(τ):X(e)→ X(v) as the source and target maps. (Note that
we allow for parallel edges in this definition of a directed graph.)

3. A forest is a partially ordered set such that for any x ∈ T , the set ↓(x) =
{y ∈ T | y ≤ x} is a finite linearly ordered subset of T . A morphism of
forests f :T → S is an order-preserving function wth the property that for
any element x ∈ T , the restriction of f to ↓(x) is a bijection from ↓(x) to
↓(f(x)). A tree is a forest with a least element; a morphism of trees is just

41

a morphism of forests. The category of forests and trees are isomorphic
and both are isomorphic to the category of presheaves on N with the usual
poset structure considered as a category.

We have seen that a functor category of the form [C,D] has whatever limits
or colimits D has. Indeed, since Sets is both complete and cocomplete, we have:

Corollary 7.2 The category SetC
op

is both complete and cocomplete, with limits
and colimits calculated “pointwise”.

So, for instance, the initial object of SetC
op

is the constant presheaf with
value ∅ and X is terminal in SetC

op

if and only if every set X(C) is a singleton.

In addition, we have the following result:

Proposition 7.3 Assume D is a category with pullbacks. Then a natural trans-
formation σ in [C,D] is a mono if and only if each component σC is monic in
D. Dually, if D has pushouts, a natural transformation in [C,D] will be an epi
if and only if each component is epi.

Proof. This follows from two observations. First, if D has pullbacks, then
pullbacks in [C,D] are computed pointwise: in other words, a square in [C,D]
will be a pullback if and only if it is a pointwise pullback. Second, in a category
a map f :A→ B is monic if and only if

A A

A B

1

1 f

f

is a pullback.

For categories of presheaves this means that a map of presheaves is an epi
if and only if it is pointwise surjective, and a mono if and only if it is pointwise
injective. To uncover more structure of the category of presheaves, we need the
Yoneda embedding.

7.2 The Yoneda Lemma

For each locally small category C there is a functor

HomC : Cop × C → Sets,

which sends a pair (A,B) of objects in C to HomC(A,B); in addition, if (f, g)
is a morphism (A,B)→ (A′, B′) in C (so f :A′ → A in C and g:B → B′ in D),
then there is an operation

HomC(A,B)→ HomC(A
′, B′)

42

sending h:A→ B to g ◦ h ◦ f :A′ → B′. Functoriality is easily verified.

Since SetC
op

is an exponential, the functor HomC corresponds to a functor

y: C → SetC
op

.

To spell out what this means, we have for each object C in C a presheaf yC
with (yC)(D) = HomC(D,C) for each object D in C and for each f :D → D′ an
operation (yC)(D′) → (yC)(D) given by precomposition with f . In addition,
if g:C → C ′ is a morphism in C we get a natural transformation yg: yC → yC′

whose component
(yg)D: (yC)(D)→ (yC′)(D)

at D is given by postcomposition with g. The functor y is called the Yoneda
embedding. An embedding is a functor which is full and faithful and injective
on objects. To prove that y is an embedding, we will need the following result,
which is one of the most important facts in category theory.

Theorem 7.4 (Yoneda Lemma) For every object F of SetC
op

and every ob-
ject C of C, the operation

αC,F : SetC
op

(yC , F)→ F (C)

sending a natural transformation σ: yC → F to (σC)(1C) is a bijection. More-
over, this bijection is natural in C and F in the following sense: given g:C ′ → C
in C and µ:F ⇒ F ′ in SetC

op

, the diagram

SetC
op

(yC , F)

SetC
op

(g,µ)

��

fC,F
// F (C)

µC′F (g)=F ′(g)µC

��

SetC
op

(yC′ , F
′)
fC′,F ′

// F ′(C ′)

commutes in Set. In other words, α is a natural isomorphism between the func-
tors

Cop × Ĉ Setsev

and

Cop × Ĉ Ĉop × Ĉ Sets.
y×1 Hom

Proof. If κ = (κC′ |C ′ ∈ C0) is a natural transformation: yC ⇒ F then,
κC′(f) must be equal to F (f)(κC(1C)). So κ is completely determined by
κC(1C) ∈ F (C) and conversely, any element of F (C) determines a natural
transformation yC ⇒ F .

43

Given g:C ′ → C in C and µ:F ⇒ F ′ in SetC
op

, the map SetC
op

(g, µ) sends
the natural transformation κ = (κC′′ |C ′′ ∈ C0): yC ⇒ F to λ = (λC′′ |C ′′ ∈ C0)
where λC′′ : yC′(C

′′)→ F ′(C ′′) is defined by

λC′′(h:C ′′ → C ′) = µC′′(κC′′(gh))

Now
fC′,F ′(λ) = λC′(1C′)

= µC′(κC′(g))
= µC′(F (g)(κC(1C)))
= (µC′F (g))(fC,F (κ))

which proves the naturality statement.

Definition 7.5 A presheaf which is isomorphic to one of the form yC is called
representable.

Let X be a presheaf on C, and let y↓X be the following category (this is an
example of a ‘comma category’ construction): objects are pairs (C, µ) with C

an object of C and µ: yC → X an arrow in SetC
op

. A morphism (C, µ)→ (C ′, ν)
is an arrow f :C → C ′ in C such that the triangle

yC

µ
!!

yf
// yC′

ν
}}

X

commutes.

Note that if this is the case and µ: yC → X corresponds to ξ ∈ X(C) and
ν: yC′ → X corresponds to η ∈ X(C ′), then ξ = X(f)(η).

There is a functor UX : y↓X → C (the forgetful functor) which sends (C, µ)
to C and f to itself; by composition with y we get a diagram

y◦UX : y↓X → SetC
op

Clearly, there is a natural transformation ρ from y◦UX to the constant functor
∆X from y↓X to SetC

op

with value X: let ρ(C,µ) = µ: yC → X. So there is a

cocone in SetC
op

for y◦UX with vertex X.

Proposition 7.6 The cocone ρ: y◦UX ⇒ ∆X is colimiting.

Proof. Suppose λ: y◦UX ⇒ ∆Y is another cocone. Define ν:X → Y by
νC(ξ) = (λ(C,µ))C(idC), where µ: yC → X corresponds to ξ in the Yoneda
Lemma.

44

Then ν is natural: if f :C ′ → C in C and µ′: yC′ → X corresponds to
X(f)(ξ), the diagram

yC′

µ′ !!

yf
// yC

µ
}}

X

commutes, so f is an arrow (C ′, µ′) → (C, µ) in y↓X. Since λ is a cocone, we
have that

yC′

λ(C′,µ′) !!

yf
// yC

λ(C,µ)~~

Y

commutes; so

νC′(X(f)(ξ)) = (λ(C′,µ′))C′(idC′) =
(λ(C,µ))C′((yf)C′(idC′)) = (λ(C,µ))C′(f) =
Y (f)((λ(C,µ))C(idC)) = Y (f)(νC(ξ))

It is easy to see that λ: y◦UX ⇒ ∆Y factors through ρ via ν, and that the
factorization is unique.

Proposition 7.6 is often referred to by saying that “every presheaf is a colimit
of representables”.

Furthermore we note the following fact: the Yoneda embedding C → SetC
op

is the ‘free colimit completion’ of C. That is: for any functor F : C → D where
D is a cocomplete category, there is, up to isomorphism, exactly one colimit
preserving functor F̃ : SetC

op

→ D such that the diagram

C

y ""

F // D

SetC
op

F̃

<<

commutes. F̃ (X) is computed as the colimit in D of the diagram

y↓X UX→ C F→ D

The functor F̃ is also called the ‘left Kan extension of F along y’.

7.3 Applications of the Yoneda Lemma

In the remainder of the course will see numerous applications of the Yoneda
Lemma. We can already mention the following three.

45

7.3.1 The Yoneda embedding

First of all, the Yoneda Lemma can be used to see that y is indeed an embedding
(full and faithful and injective on objects). That y is injective on objects is easy
to see, because 1C ∈ yC(C) for each object C, and 1C is in no other set yD(E).
In addition:

Corollary 7.7 The functor y: C → SetC
op

is full and faithful.

Proof. Immediate by the Yoneda lemma, since

C(C,C ′) = yC′(C) ∼= SetC
op

(yC , yC′)

and this bijection is induced by y.

7.3.2 Arguments from representability

Another typical application of the Yoneda lemma is the following. One wants to
prove that objects A and B of C are isomorphic. Suppose one can show that for
every object X of C there is a bijection fX : C(X,A)→ C(X,B) which is natural
in X; i.e. given g:X ′ → X in C one has that

C(X,A)

C(g,1A)

��

fX // C(X,B)

C(g,1B)

��

C(X ′, A)
fX′
// C(X ′, B)

commutes.

Then one can conclude that A and B are isomorphic in C; for, from what
one has just shown it follows that yA and yB are isomorphic objects in SetC

op

.
Since y is full and faithful, this map is of the form yf for some isomorphism f
in C.

7.3.3 Presheaves are cartesian closed

In addition, we can show that category of presheaves is cartesian closed. Indeed,
exponentials can be calculated using the Yoneda Lemma. For Y X , we need a
natural 1-1 correspondence

SetC
op

(Z, Y X) ∼= SetC
op

(Z ×X,Y)

In particular this should hold for representable presheaves yC ; so, by the Yoneda
Lemma, we should have a 1-1 correspondence

Y X(C) ∼= SetC
op

(yC ×X,Y)

46

which is natural in C. This leads us to define a presheaf Y X by:

Y X(C) = SetC
op

(yC ×X,Y),

and for f :C ′ → C we let Y X(f):Y X(C) → Y X(C ′) be defined by composi-
tion with yf × idX : yC′ × X → yC × X. Then certainly, Y X is a well-defined
presheaf. One can now check (exercise!) that together with the evaluation map
evX,Y :Y X ×X → Y given by

(φ, x) 7→ φC(idC , x)

the presheaf Y X is the exponential in the category of presheaves.

7.4 Exercises

Exercise 55 Suppose objects A and B are such that for every object X in
C there is a bijection fX : C(A,X) → C(B,X), naturally in a sense you define
yourself. Conclude that A and B are isomorphic (hint: duality!).

Exercise 56 Show that the following are equivalent for each small category C:

(1) C has a terminal object.

(2) The terminal object in Ĉ is representable.

Exercise 57 Show that the following are equivalent for each small category C:

(1) C has binary products.

(2) For each pair of objects A and B in C the presheaf yA×yB is representable

in Ĉ.

Can you generalise the statement in this and previous exercise to general limits?

Exercise 58 Again, let C be a small category with binary products, and let A
and B be objects in C.

(a) Show that the assignment

X 7→ HomC(X ×A,B)

is part of a functor Cop → Sets, with the action on morphisms f :X ′ → X
in C given by precomposition with f × 1A.

(b) What does it say about C if the functor in part (a) is representable?

Exercise 59 Prove that y: C → SetC
op

preserves all limits which exist in C.
Prove also, that if C is cartesian closed, y preserves exponents.

47

8 Presheaves as a topos

The aim of this section is to show that presheaves on a small category form a
topos.

Definition 8.1 An (elementary) topos is a category with finite limits, which is
cartesian closed and has a subobject classifier.

So what we have to explain is what a subobject classifier is and why the
category of presheaves has such a subobject classifier.

8.1 Subobject classifier

Another piece of structure we shall need is that of a subobject classifier.

Definition 8.2 Suppose E is a category with finite limits. A subobject classifier
is a monomorphism t:T → Ω with the property that for any monomorphism
m:A→ B in E there is a unique arrow φ:B → Ω such that there is a pullback
diagram

A

m

��

ψ
// T

t

��

B
φ
// Ω

(Note that there is at most one map ψ making the square commute, because t
is monic.) We say that the unique arrow φ classifies m or rather, the subobject
represented by m (if m and m′ represent the same subobject, they have the
same classifying arrow).

In Set, the two element set {>,⊥} together with the arrow 1 → {>,⊥}
picking out > acts as a subobject classifier: for A ⊆ B we have the unique
characteristic function φA:B → {>,⊥} defined by φA(x) = > if x ∈ A, and
φA(x) = ⊥ otherwise.

It is no coincidence that in Set, the domain of t:T → Ω is a terminal object:
T is always terminal.

Lemma 8.3 Let E be a category with finite limits and t:T → Ω be a subobject
classifier. Then T is terminal.

Proof. For, for any object A the arrow φ:A → Ω which classifies the identity
on A factors as tn for some n:A → T . On the other hand, if k:A → T is any

48

arrow, then we have pullback diagrams

A

idA
��

k // T

idT
��

idT // T

t

��

A
k
// T

t
// Ω

so tk classifies idA. By uniqueness of the classifying map, tn = tk; since t is
mono, n = k. So T is terminal.

Henceforth we shall write 1
t→ Ω for the subobject classifier, or, by abuse of

language, just Ω.

To explain the name subobject classifier, let us explain what subobjects are.

Definition 8.4 Let X be an object in some category E . The monos with
codomain X can be preordered by saying that (m:A → X) ≤ (n:B → X)
holds whenever there is a (necessarily unique and monic) map k:A → B such
that nk = m. An isomorphism class of monos in this preorder is called a subob-
ject on X, and we write

SubE(X)

for the “poclass” (partially ordered class) of subobjects on X. If each SubE(X)
is a set, we call E well-powered.

Note that in the category of Sets there is an order-preserving bijection be-
tween the subobjects on X and the subsets of X. Indeed, if A ⊆ X, then this
gives rise to an inclusion map i:A → X; conversely, if m:A → X is injective,
then it can be written as

A ∼= Im(m) ⊆ X.

Since the pullback of a mono is again a mono, we have for each morphism
f :Y → X in E a pullback functor (monotone function)

f∗: SubE(X)→ SubE(Y).

Indeed, if E is small, we could regard SubE as a functor

Eop → Sets.

Having a subobject classifier is equivalent to saying that that this functor is
representable. In other words, having a subobject classifier means that there is
an object Ω such that there is a natural isomorphism

HomE(X,Ω) ∼= SubE(X).

Indeed, the Yoneda Lemma tells us that this statement is equivalent to there
being a special subobject, represented by t:T → Ω, say, such that any other
subobject is a pullback of that one.

49

This leads us to consider more general power objects. In a category E with
finite products, we call an object A a power object of the object X, if there is a
natural 1-1 correspondence

E(Y,A) ∼= SubE(X × Y)

The naturality means that if f :Y → A and g:Z → Y are arrows in E and f
corresponds to the subobject U of X × Y , then fg:Z → A corresponds to the
subobject (idX × g)∗(U) of X × Z.

Power objects are unique up to isomorphism; the power object of X, if it
exists, is usually denoted P(X). Note the following consequence of the defini-
tion: to the identity map on P(X) corresponds a subobject of X ×P(X) which
we call the “element relation” ∈X . So, again by Yoneda, a power object P(X)
on X can be defined as an object equipped with subobject of ∈X of X ×P(X)
such that any subobject U of X × Y is of the form U = (idX × f)∗(∈X) for a
unique map f :Y → P(X).

Please convince yourself that power objects in the category Set are just the
familiar power sets.

8.2 Subobject classifiers in presheaves

To compute subobject classifiers and power objects in presheaves, let us first dis-
cuss subobjects in SetC

op

. A subobject of X can be identified with a subpresheaf
of X: that is, a presheaf Y such that Y (C) ⊆ X(C) for each C, and Y (f) is the
restriction of X(f) to Y (cod(f)). This follows easily from the corresponding
fact in Set.

Again, we use the Yoneda Lemma to compute the subobject classifier in
SetC

op

. We need a presheaf Ω such that at least for each representable presheaf
yC , Ω(C) is in 1-1 correspondence with the set of subobjects (in SetC

op

) of yC .
So we define Ω such that Ω(C) is the set of subpresheaves of yC ; for f :C ′ → C
we have Ω(f) defined by the action of pulling back along yf .

What do subpresheaves of yC look like? If R is a subpresheaf of yC then R
can be seen as a set of arrows with codomain C such that if f :C ′ → C is in R
and g:C ′′ → C ′ is arbitrary, then fg is in R (for, fg = yC(g)(f)). Such a set of
arrows is called a sieve on C.

Under the correspondence between subobjects of yC and sieves on C, the
operation of pulling back a subobject along a map yf (for f :C ′ → C) sends a
sieve R on C to the sieve f∗(R) on C ′ defined by

f∗(R) = {g:D → C ′ | fg ∈ R}

So Ω can be defined as follows: Ω(C) is the set of sieves on C, and Ω(f)(R) =
f∗(R). The map t: 1→ Ω sends, for each C, the unique element of 1(C) to the
maximal sieve on C (i.e., the unique sieve which contains idC).

50

Let us now prove that t: 1 → Ω, thus defined, is a subobject classifier in
SetC

op

. Let Y be a subpresheaf of X. Then for any C and any x ∈ X(C), the
set

φC(x) = {f :D → C |X(f)(x) ∈ Y (D)}

is a sieve on C, and defining φ:X → Ω in this way gives a natural transformation:
for f :C ′ → C we have

φC′(X(f)(x)) = {g:D → C ′ |X(g)(X(f)(x)) ∈ Y (D)}
= {g:D → C ′ |X(gf)(x) ∈ Y (D)}
= {g:D → C ′ | fg ∈ φC(x)}
= f∗(φC(x))
= Ω(f)(φC(x))

Moreover, if we take the pullback of t along φ, we get the subpresheaf of X
consisting of (at each object C) of those elements x for which idC ∈ φC(x); that
is, we get Y . So φ classifies the subpresheaf Y .

On the other hand, if φ:X → Ω is any natural transformation such that
pulling back t along φ gives Y , then for every x ∈ X(C) we have that x ∈ Y (C)
if and only if idC ∈ φC(x). But then by naturality we get for any f :C ′ → C
that

f ∈ φC(x) ⇔ idC′ ∈ f∗(φC(x)) ⇔ X(f)(x) ∈ Y (C ′)

which shows that the classifying map φ is unique.

So this shows that the category of presheaves is a topos. This also shows
that the category of presheaves has power objects, because in a topos E we can
put P(X) = ΩX . Indeed, for any topos E we have

HomE(Y,Ω
X) ∼= HomE(X × Y,Ω) ∼= SubE(X × Y),

naturally in X. An explicit description of the power objects in presheaves can
be found in the exercises below.

8.3 Exercises

Exercise 60 Suppose C is a preorder (P,≤). For p ∈ P we let ↓(p) = {q ∈
P | q ≤ p}. Show that sieves on p can be identified with downwards closed
subsets of ↓(p). If we denote the unique arrow q → p by qp and U is a downwards
closed subset of ↓(p), what is (qp)∗(U)?

Exercise 61 Let C be a small category. Show that the power object in the
category of presheaves on C can be defined as follows: P(X)(C) = Sub(X×yC)
and that, for f :C ′ → C, P(X)(f)(U) = (idX × yf)∗(U). Prove also, that the
element relation, as a subpresheaf ∈X of P(X)×X, is given by

(∈X)(C) = {(U, x) ∈ Sub(yC ×X)×X(C) | (idC , x) ∈ U(C)}.

51

Exercise 62 Let C be a small category; we work in the category SetC
op

of
presheaves on C. Let P be such a presheaf. We define a presheaf P̃ as follows:
for an object C of C, P̃ (C) consists of those subobjects α of yC×P which satisfy
the following condition: for all arrows f :D → C, the set

{y ∈ P (D) | (f, y) ∈ α(D)}

has at most one element.

a) Complete the definition of P̃ as a presheaf.

b) Show that there is a monic map ηP :P → P̃ with the following property:
for every diagram

A
g
//

m

��

P

B

with m mono, there is a unique map g̃:B → P̃ such that the diagram

A
g
//

m

��

P

ηP
��

B
g̃
// P̃

is a pullback square. The arrow P
ηP→ P̃ is called a partial map classifier

for P .

c) Show that the assignment P 7→ P̃ is part of a functor (̃·) in such a way
that the maps ηP form a natural transformation from the identity functor
to (̃·), and all naturality squares for η are pullbacks.

Exercise 63 Let E be a topos with subobject classifier 1
t→ Ω.

a) Prove that Ω is injective. (An object I is injective if for any pair of maps
f :A→ I and g:A→ B with g monic, there is a map h:B → I such that
hg = f ; the notion of an injective object is dual to that of a projective
object.)

b) Prove that every object of the form ΩX is injective.

c) Conclude that E has enough injectives. (A category E has enough injec-
tives if for any object X there is an injective object I and a monomorphism
m:X → I.)

52

9 Adjunctions

The following kind of problem occurs quite regularly: suppose we have a functor

D G→ C and for a given object C of C, we look for an object G(D) which “best

approximates” C, in the sense that there is a map C
η→ G(D) with the property

that any other map C
g→ G(D′) factors uniquely as G(f)η for f :D → D′ in D.

We have seen, that if G is the inclusion of Abgp into Grp, the abelianization
of a group is an example. Another example is the Čech-Stone compactification in
topology: for a completely regular topological space X one constructs a compact
Hausdorff space βX out of it, and a map X → βX, such that any continuous
map from X to a compact Hausdorff space factors uniquely through this map.

Of course, what we described here is a sort of “right-sided” approximation;
the reader can define for himself what the notion for a left-sided approximation
would be.

The categorical description of this kind of phenomena goes via the concept
of adjunction, which this chapter is about.

9.1 Definition and examples

Definition 9.1 Let C
F // D
G
oo be a pair of functors between categories C and

D. An adjunction between F and G is a natural isomorphism between the two
functors

Cop ×D → Sets

given by HomD ◦(F op×1D) and HomC ◦(1Cop×G). If such an adjunction exists,
we say that F is left adjoint to G, or G is right adjoint to F . We write this as
F a G.

So an adjunction is a natural bijection:

D(FC,D)
mC,D

// C(C,GD)

for each pair of objects C ∈ C0, D ∈ D0. Two maps f :FD → C in C and
g:D → GC in D which correspond to each other under this correspondence are
called transposes of each other. If m is understood, we will often write f and g

for the transposes of f and g, respectively (so f = f and g = g).

The naturality of mC,D means that, given f :C ′ → C, g:D → D′ in C and
D respectively, the diagram

53

D(FC,D) C(C,GD)

D(FC ′, D′) C(C ′, GD′)

mC,D

D(Ff,g) C(f,Gg)
mC′,D′

commutes in Set. In other words, for α:FC → D in D we must have

Gg ◦ α ◦ f = g ◦ α ◦ Ff.

This single equation is equivalent to the special cases where f = 1 and g = 1:

Gg ◦ α = g ◦ α and α ◦ f = α ◦ Ff.

Of course, the naturality of mC,D is equivalent to the naturality of m−1
C,D, which

we can state as the following equation:

g ◦ β ◦ Ff = Gg ◦ β ◦ f

where β:C → GD. This equation can again be split up in

g ◦ β = Gg ◦ β and β ◦ Ff = β ◦ f.

Examples. The world is full of examples of adjoint functors. We have met
several:

a) Consider the forgetful functor U : Grp→ Set and the free functor F : Set→
Grp. Given a function from a set A to a group G (which is an arrow
A → U(G) in Set) we can uniquely extend it to a group homomorphism
from (Ã, ?) to G (see example d) of 1.1), i.e. an arrow F (A)→ G in Grp,
and conversely. This is natural in A and G, so F a U ;

b) The functor Dgrph→ Cat given in example b) of 1.1 is left adjoint to the
forgetful functor Cat→ Dgrph;

c) Given functors P
F // Qop

G
oo between two preorders P and Q, F a G if

and only if we have the equivalence

x ≤ G(y)⇔ y ≤ F (x)

for x ∈ P, y ∈ Q; in order theory such a situation is called a Galois
connection.

d) In Exercise 6 of Chapter 1 we did “abelianization” of a group G. We made
use of the fact that any homomorphism G → H with H abelian, factors
uniquely through G/[G,G], giving a natural 1-1 correspondence

Grp(G, I(H))
∼→ Abgp(G/[G,G], H)

where I: Abgp→ Grp is the inclusion. So abelianization is left adjoint to
the inclusion functor of abelian groups into groups;

54

e) The free monoid F (A) on a set A is just the set of strings on the alphabet
A. F : Set → Mon is a functor left adjoint to the forgetful functor from
Mon to Set;

f) If X is an object in a cartesian closed category C, then the functor (−)×
X: C → C is left adjoint to the functor (−)X : C → C.

g) Exercise 6 of Chapter 2 gives two functors F,G: Set → Cat, assigning
to a set the discrete and indiscrete category of that set. F and G are

respectively left and right adjoint to the functor Cat
Ob→ Set which assigns

to a (small) category its set of objects (to be precise, for this example to
work we have to take for Cat the category of small categories), and to a
functor its action on objects.

h) If U : Top → Set is the forgetful functor which assigns to a topological
space its set of points, the functors assigning to a set X the discrete and
indiscrete topology on that set are its left and right adjoint, respectively.

i) If f :Y → X is a morphism in a category C, then precomposition with f
defines a functor f!: C/Y → C/X. If C has pullbacks, then this functor has
a right adjoint f∗: C/X → C/Y which assigns to each morphism g:A→ X
its pullback:

f∗A A

Y X.

f∗g g

f

The reader is encouraged to check that this is indeed a functor whose
action on a morphism k: g → h in C/X is the unique dotted arrow making

f∗B B

f∗A A

Y X

f∗h

k

h
f∗g g

f

commute.

j) Let P : Setop → Set be the functor which takes the powerset on objects,

and for X
f→ Y , P (f):P (Y) → P (X) gives for each subset B of Y its

inverse image under f .

Now P might as well be regarded as a functor Set→ Setop; let’s write P̄
for that functor. Since there is a natural bijection:

Set(X,P (Y))
∼→ Set(Y, P (X)) = Setop(P̄ (X), Y)

we have an adjunction P̄ a P .

55

9.2 Unit and counit of an adjunction

Suppose we have an adjoint pair of functors C
F // D
G
oo with a natural bijective

correspondence

D(FC,D)
mC,D

// C(C,GD) .

If we fix D, then naturality says that the functor

Cop → Sets:C 7→ D(FC,D)

is representable and represented by GD. The Yoneda Lemma tells us that for
εD = m−1

GD,D(1GD):FGD → D in D we have

m−1
C,D(β) = εD ◦ Fβ.

Dually, there is for each object C in C a map ηC = mC,FC(1FC):C → GFC
such that

mC,D(α) = Gα ◦ ηC .

(Indeed, if C
F // D
G
oo is an adjunction with F left adjoint to G, then

Cop
Gop
// Dop

F op
oo

is an adjunction too, with Gop left adjoint to F op.)

Proposition 9.2 The maps (ηC :C ∈ C0) form a natural transformation 1C ⇒
GF , while the maps (εD:D ∈ D0) form a natural transformation FG⇒ 1D.

Proof. By duality, we only need to prove the first statement. So let f :C ′ → C
and note that

GFf ◦ ηC′ = Ff = 1FC ◦ Ff = 1FC ◦ f = ηC ◦ f,

expresses that η is natural.

We call the natural transformation η: 1C ⇒ GF the unit and the natural
transformation ε:FG⇒ 1D the counit of the adjunction.

The fact that mC,D and m−1
C,D are each others inverses amounts to saying

that for all α:FC → D and β:C → GD the diagrams

C

ηC

��

β
// GD

GFC
GF (β)

// GFG(D)

G(εD)

OO

and

FC
α //

F (ηC)

��

D

FGFC
FG(α)

// FGD

εD

OO

56

commute. Because η and ε are natural transformations, these squares will com-
mute as soon as they commute for α = 1FC and β = 1GD. So these squares will
commute iff we have commuting diagrams of natural transformations:

G
η?G +3

1G �&

GFG

G◦ε
��
G

F
F◦η +3

1F �&

FGF

ε?F

��
F

Here η ? G denotes (ηGD|D ∈ D0) and G ◦ ε denotes (G(εD)|D ∈ D0). We
refer to these as the triangle equalities.

We conclude:

Proposition 9.3 Given C
F // D
G
oo , η: 1C ⇒ GF and ε:FG ⇒ 1D satisfying

(G ◦ ε) · (η ? G) = 1G and (ε ? F) · (F ◦ η) = 1F , we have an adjunction F a G
with η as its unit and ε as its counit.

Proof. Because η and ε are natural transformations, the mappings

mC,D(α): = Gα ◦ ηC and m−1
C,D(β) = εD ◦ Fβ

are natural; and because the triangle equalities hold, these operations are indeed
each others inverses.

For this reason an adjunction is also often defined as a pair of natural trans-
formations η: 1C ⇒ GF and ε:FG⇒ 1D satisfying the triangle equalities.

Proposition 9.4 Suppose that F : C → D is an equivalence of categories with
pseudo-inverse G:D → C and natural isomorphisms µ: 1C ⇒ GF and ν:FG ⇒
1D. Then we can find an adjunction F a G whose unit is µ, and an adjunction
whose counit is ν (but not necessarily both at the same time).

Proof. By duality it suffices to prove the statement for µ. But if µ is a natural
isomorphism and G is full and faithful, then

mC,D(α): = Gα ◦ µC

is a natural isomorphism.

Note that, again by duality, we have that if F is an equivalence with pseudo-
inverse G, then G a F as well.

9.3 Preservation of (co)limits by adjoint functors

A very important, and useful, aspect of adjoint functors is their behaviour with
respect to limits and colimits.

57

Theorem 9.5 Let C
F // D
G
oo such that F a G. Then:

(a) F preserves all colimits which exist in C;

(b) G preserves all limits which exist in D.

By duality it suffices to prove (a), which will follow from the following two
lemmas.

Lemma 9.6 Let C
F // D
G
oo such that F a G. If C has an initial object, then

it is preserved by F .

Proof. Suppose I is initial in C. To prove that FI is initial in D, it suffices to
prove that HomD(FI,D) is a one-element set for any object D in D. But this
set is in bijective correspondence with HomC(I,GD), which contains precisely
one element, because I is initial in C.

Lemma 9.7 Given F : C → D, and M : E → C. If F has a right adjoint, then
the functor

F̂ : Cocone(M)→ Cocone(FM)

induced by F has a right adjoint as well.

Proof. Let G:D → C be right adjoint to F . The right adjoint to F̂ is the func-
tor G̃, which sends a cocone (D, (τE :FME → D)E∈E0)) to (GD, (τE :ME →
GD)E∈E0)), and whose action on a cocone morphisms is the same as applying
G. Using the equation Gg ◦ α = g ◦ α one quickly checks that this is indeed a
functor.

To see that G̃ is right adjoint to F̂ it suffices to check that for any pair
of cocones (C, (σ:FE → C)E∈E0) and (D, (τE :FME → D)E∈E0)), a map

α:FC → D is a map of cocones F̂ (C, σ)→ (D, τ) if and only if α:C → GD is a

map of cocones (C, σ)→ G̃(D, τ). But the former statement says τE = α◦FσE
and the latter τE = α ◦ σE ; so this follows from the equation α ◦ Ff = α ◦ f .

From the theorem on preservation of (co)limits by adjoint functors one can often
conclude that certain functors cannot have a right or a left adjoint.

Examples

a) The forgetful functor Mon→ Set does not preserve epis, as we have seen
in 1.2. In chapter 3 we’ve seen that f is epi iff

58

• •

• •

f

f 1

1

is a pushout; since left adjoints preserve identities and pushouts, they
preserve epis; therefore the forgetful functor Mon → Set does not have a
right adjoint;

b) The functor (−) × X: Set → Set does not preserve the terminal object
unless X is itself terminal in Set; therefore, it does not have a left adjoint
for non-terminal X.

Another use of the theorem has to do with the computation of limits. Many
categories, as we have seen, have a forgetful functor to Set which has a left
adjoint. So the forgetful functor preserves limits, and since these can easily be
computed in Set, one already knows the “underlying set” of the vertex of the
limiting cone one wants to compute.

9.4 Exercises

Exercise 64 Let C and D be categories and

∆:D → [C,D]

be the diagonal functor (see Chapter 3). Show that ∆ has a left adjoint if and
only if D has colimits of shape C; and a right adjoint if and only if D has limits
of shape C.

Exercise 65 Given C
F1 // D
G1

oo
F2 // E
G2

oo , if F1 a G1 and F2 a G2 then F2F1 a

G1G2.

Exercise 66 Suppose that F : Setop → Set is a functor, such that for F op: Set→
Setop we have that F op a F . Then there is a set A such that F is naturally
isomorphic to Set(−, A).

Exercise 67 Suppose that F : C → D is a functor and that for each object D of
D there is an object GD of C and an arrow εD:FGD → D with the property that
for every object C of C and any map f :FC → D, there is a unique f̃ :C → GD
such that

FC

F f̃ ##

f
// D

FGD

εD

<<

59

commutes.

Prove that G:D0 → C0 extends to a functor G:D → C which is right adjoint
to F , and that (εD:FGD → D|D ∈ D0) is the counit of the adjunction.

Construct also the unit of the adjunction.

Exercise 68 Given G:D → C, for each object C of C we let (C↓G) denote
the category which has as objects pairs (D, g) where D is an object in D and
g:C → GD is an arrow in C. An arrow (D, g)→ (D′, g′) in (D↓G) is an arrow
f :D → D′ in D which makes

C
g

}}

g′

!!

GD
Gf

// GD′

commute.

Show that G has a left adjoint if and only if for each D, the category (D↓G)
has an initial object.

Exercise 69 (Uniqueness of adjoints) Any two left (or right) adjoints of a given
functor are naturally isomorphic. (Hint: Yoneda!)

Exercise 70 Suppose D has both an initial and a terminal object; denote by
L the functor D → D which sends everything to the initial, and by R the one
which sends everything to the terminal object. Prove that L a R.

Exercise 71 An object M of a category C is called injective if for any diagram

A

m

��

f

B M

with m a monomorphism, there exists an arrow g:B →M satisfying gm = f .

a) Let C,D be categories and C
F // D
G
oo functors with F a G. Prove: if F

preserves monos, then G preserves injective objects.

b) Formulate the statement dual to part a) (the dual notion of ‘injective’ is
projective).

c) Now assume that in D, for any object X there is an injective object M
and a monomorphism m:X → M (one says: the category D has enough
injectives). Prove the converse of part a).

60

Exercise 72 Show that the forgetful functor Pos→ Set has a left adjoint, but
not a right adjoint.

Hint: think of the coequalizer of the following two maps Q→ R in Pos: one
is the inclusion, the other is the constant zero map.

61

10 Monads and Algebras

10.1 Monads and adjunctions

Given an adjunction C
F // D
G
oo let us look at the functor T = GF : C → C.

We have seen that there is a natural transformation η: 1C ⇒ T . In addition,
there is a natural transformation µ:T 2 ⇒ T whose components µC are

T 2(C) = GFGFC
G(εFC)→ GFC = T (C).

Lemma 10.1 The equalities

T 3

µT

��

Tµ
// T 2

µ

��

T 2
µ
// T

and

T
ηT
//

1T

T 2

µ

��

T
Tη
oo

1T
~~

T

hold. Here (Tµ)C = T (µC):T 3C → T 2C and (µT)C = µTC :T 3C → T 2C
(similarly for ηT and Tη).

Proof. We have

µC ◦ ηTC = G(εFC) ◦ ηGFC = G(εFC) ◦ 1FC = εFC = 1

and
µC ◦ TηC = G(εFC) ◦GFηC = G(εFC ◦ FηC) = 1,

where we have used the triangle equality in the second calculation. In addition,
we have

µC ◦ TµC = G(εFC) ◦GFG(εFC) = G(εFC ◦ FGεC) =(∗)

G(εFC ◦ εFGFC) = GεFC ◦G(εFGCG) = µC ◦ µTC ,

where at (*) we have used the naturality of ε.

Definition 10.2 Let C be a category. A triple (T, η, µ) consisting of an end-
ofunctor T : C → C and natural transformations η: 1C ⇒ T and µ:T 2 ⇒ T
satisfying the identities in the previous lemma is called a monad.

Try to see the formal analogy between the defining equalities for a monad
and the axioms for a monoid: writing m(e, f) for ef in a monoid, and η for the
unit element, we have

m(e,m(g, h)) = m(m(e, g), h) (associativity)
m(η, e) = m(e, η) = e (unit)

62

Following this one calls µ the multiplication of the monad, and η its unit.

Example. The powerset functor P: Set → Set (example h) of 2.2, with η and
µ indicated there) is a monad (check).

Dually, there is the notion of a comonad (L, δ, ε) on a category D, with equalities

L

δ

��

δ // L2

Lδ

��

L2

δL
// L3

L
1L

~~

δ

��

1L

L L2

εL
oo

Lε
// L

Given an adjunction (F,G, ε, η), (FG, δ = FηG, ε) is a comonad on D. We call
δ the comultiplication and ε the counit (this is in harmony with the unit-counit
terminology for adjunctions).

Although, in many contexts, comonads and the notions derived from them
are at least as important as monads, the treatment is dual so I concentrate on
monads.

Every adjunction gives rise to a monad; conversely, every monad arises from
an adjunction, but in more than one way. Essentially, there are a “maximal”
(more precisely: terminal) and a “minimal” (more precisely: initial) solution to
the problem of finding an adjunction from which a given monad arises.

Example. A monad on a poset P is a monotone function T :P → P with the
properties x ≤ T (x) and T 2(x) ≤ T (x) for all x ∈ P ; such an operation is also
often called a closure operation on P . Note that T 2 = T because T is monotone.

In this situation, let Q ⊆ P be the image of T , with the ordering inherited
from P . We have maps r:P → Q and i:Q → P such that ri is the identity on
Q and ir = T :P → P .

For x ∈ P , y ∈ Q we have x ≤ i(y) ⇔ r(x) ≤ y (check); so r a i and the
operation T arises from this adjunction.

10.2 Algebras for a monad

Definition 10.3 Given a monad (T, η, µ) on a category C, we define the cat-
egory T -Alg of (Eilenberg-Moore) algebras for the monad T or T -algebras as
follows:

63

• Objects are pairs (X,h) where X is an object of C and h:T (X)→ X is an
arrow in C such that

T 2(X)

µX

��

T (h)
// T (X)

h

��

T (X)
h
// X

and

X
ηX //

1X
""

T (X)

h

��

X

commute;

• Morphisms: (X,h)→ (Y, k) are morphisms X
f→ Y in C for which

T (X)

h

��

T (f)
// T (Y)

k

��

X
f

// Y

commutes.

Theorem 10.4 There is an adjunction between T -Alg and C which brings about
the given monad T .

Proof. There is an obvious forgetful functor UT :T -Alg→ C which takes (X,h)
to X. I claim that UT has a left adjoint FT :

FT assigns to an object X the T -algebra T 2(X)
µX→ T (X); to X

f→ Y
the map T (f); this is an algebra map because of the naturality of µ. That

T 2(X)
µX→ T (X) is an algebra follows from the defining axioms for a monad T .

We have a natural transformation η: 1⇒ UTFT , and to prove that it is the
unit of an adjunction it suffices to prove that for each map g:X → UT (Y, h),
with X being an object X in C and (Y, h) being a T -algebra, there is a unique
map of algebras g:FTX → (U, h) such that

X UTFTX

UT (U, h)

g

ηX

UT (g)

commutes. We put g: (T (X), µX) → (Y, h) to be the arrow T (X)
T (g)→ T (Y)

h→
Y . This is a map of algebras since

T 2(X)

µX

��

T 2(g)
// T 2(Y)

µY

��

T (h)
// T (Y)

h

��

T (X)
T (g)

// T (Y)
h
// Y

64

commutes; the left hand square is the naturality of µ; the right hand square is
because (Y, h) is a T -algebra. In addition, we have

h ◦ Tg ◦ ηX = h ◦ ηT ◦ g = g,

since η is natural and h is an algebra.

To see that g is unique with this property, let f : (TX, µX) → (Y, h) be a
map of algebras with UT f ◦ ηX = g. Then

g = h ◦ Tg = h ◦ Tf ◦ TηX =(∗) f ◦ µX ◦ TηX = f,

where at (*) we have used that f is a morphism of algebras. This finishes the
proof of the existence of the adjunction with unit η.

The counit of the adjunction is the natural transformation which at (Y, h)
is the transpose of 1UT (Y,h): that is, it is h considered as a map of algebras
(TY, µY)→ (Y, h). Therefore

T 2 = UTFTUTFT
UT εFT→ UTFT = T

is the natural transformation which at X is the algebra structure on FTX, which
is µX . Hence the monad induced by the adjunction FT a UT is the monad T
we started from.

Example. The group monad. Combining the forgetful functor U : Grp → Set
with the left adjoint, the free functor Set → Grp, we get the following monad
on Set:

T (A) is the set of sequences on the alphabet AtA−1 (A−1 is the set {a−1|a ∈
A} of formal inverses of elements of A, as in example e) of 1.1) in which no

aa−1 or a−1a occur. The unit A
ηA→ TA sends a ∈ A to the string 〈a〉. The

multiplication µ:T 2(A)→ T (A) works as follows. Define (−)−:AtA−1 → At
A−1 by a− = a−1 and (a−1)− = a. Define also (−)− on strings by (a1 . . . an)− =
a−n . . . a

−
1 . Now for an element of TT (A), which is a string on the alphabet

T (A) t T (A)−1, say σ1 . . . σn, we let µA(σ1 . . . σn) be the concatenation of the
strings σ̃1, . . . , σ̃n on the alphabet A t A−1, where σ̃i = σi if σi ∈ T (A), and
σ̃i = (σi)

− if σi ∈ T (A)−1. Of course we still have to remove possible substrings
of the form aa−1 etc.

Now let us look at algebras for the group monad: maps T (A)
h→ A such that

for a string of strings

α = σ1, . . . , σn = 〈〈s1
1, . . . , s

k1
1 〉, . . . , 〈s1

n, . . . , s
kn
n 〉〉

we have that

h(〈hσ1, . . . , hσn〉) = h(〈s1
1, . . . , s

k1
1 , . . . , s

1
n, . . . , s

kn
n 〉)

and
h(〈a〉) = a for a ∈ A

65

I claim that this is the same thing as a group structure on A, with multiplication
a · b = h(〈a, b〉).

The unit element is given by h(〈〉); the inverse of a ∈ A is h(〈a−1〉) since

h(〈a, h(〈a−1〉)〉) = h(〈h(〈a〉), h(〈a−1〉)〉) =
h(〈a, a−1〉) = h(〈〉), the unit element

Try to see for yourself how the associativity of the monad and its algebras
transforms into associativity of the group law.

This situation is very important and has its own name:

Definition 10.5 Given an adjunction C
F // D
G
oo with F a G, there is always

a comparison functor K:D → T -Alg for T = GF , the monad induced by the

adjunction. K sends an object D of D to the T -algebra GFG(D)
G(εD)→ G(D),

and a map f :D → D′ to Gf . (One can use one of the triangle equalities and
naturality of ε to prove this is well-defined.)

We say that the functor G:D → C is monadic, or by abuse of language (if G
is understood), that D is monadic over C, if K is an equivalence.

In many cases however, the situation is not monadic. Take the forgetful functor
U : Pos → Set. It has a left adjoint F which sends a set X to the discrete
ordering on X (x ≤ y iff x = y). Of course, UF is the identity on Set and the
UF -algebras are just sets. The comparison functor K is the functor U , and this
is not an equivalence.

Another example of a monadic situation is of importance in domain theory.
Let Pos⊥ be the category of partially ordered sets with a least element, and
order preserving maps which also preserve the least element.

There is an obvious inclusion functor U : Pos⊥ → Pos, and U has a left
adjoint F . Given a poset X, F (X) is X “with a bottom element added”:�

�
�
�r

X

⊥

Given f :X → Y in Pos, F (f) sends the new bottom element of X to the new
bottom element of Y , and is just f on the rest. If f :X → Y in Pos is a map
and Y has a least element, we have F (X) → Y in Pos⊥ by sending ⊥ to the
least element of Y . So the adjunction is clear.

The monad UF : Pos→ Pos, just adding a least element, is called the lifting
monad. Unit and multiplication are:

66

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�-

��:
-

-

r rr r
ηX :X → T (X) µX :T 2(X)→ T (X)

A T -algebra h:TX → X is first of all a monotone map, but since hηX = 1X ,
h is epi in Pos so surjective. It follows that X must have a least element h(⊥).
From the axioms for an algebra one deduces that h must be the identity when
restricted to X, and h(⊥) the least element of X.

Another poset example: algebras for the power set monad P on Set (example
j) of 2.2). Such an algebra h:P(X) → X must satisfy h({x}) = x and for
α ⊆ P(X):

h({h(A)|A ∈ α}) = h({x|∃A ∈ α(x ∈ A)}) = h(
⋃
α)

Now we can, given an algebra structure on X, define a partial order on X by
putting x ≤ y iff h({x, y}) = y.

Indeed, this is clearly reflexive and antisymmetric. As to transitivity, if x ≤ y
and y ≤ z then

h({x, z})=h({x, h({y, z})}) =
h({h({x}), h({y, z})})=h({x} ∪ {y, z}) =

h({x, y} ∪ {z})=h({h({x, y}), h({z})})=
h({y, z})=z

so x ≤ z.

Furthermore this partial order is complete: least upper bounds for arbitrary
subsets exist. For

∨
B = h(B) for B ⊆ X: for x ∈ B we have h({x, h(B)}) =

h({x} ∪B) = h(B) so x ≤
∨
B; and if x ≤ y for all x ∈ B then

h({h(B), y})=h(B ∪ {y}) =
h(
⋃
x∈B{x, y})=h({h({x, y})|x ∈ B})=

h({y})=y

so
∨
B ≤ y.

We can also check that a map of algebras is a
∨

-preserving monotone
function. Conversely, every

∨
-preserving monotone function between complete

posets determines a P-algebra homomorphism.

We have an equivalence between the category of complete posets and
∨

-
preserving functions, and P-algebras.

67

10.3 T -algebras at least as complete as C

Let T be a monad on C. The following exercise is meant to show that if C has
all limits of a certain type, so does T -Alg. In particular, if C is complete, so is
T -Alg; this is often an important application of a monadic situation. In fact,
something stronger holds.

Definition 10.6 For a functor G:D → C we say that G creates limits of type
E if for every functor M : E → D and every limiting cone (C, σ) for GM in C,
there is a unique cone (D, τ) for M in D which is taken by G to (C, σ), and
moreover this unique cone is limiting for M in D.

Clearly, if G creates limits of type E and C has all limits of type E , then D
has them, too.

Proposition 10.7 The forgetful functor UT :T − Alg → C creates limits of
every type.

Proof. Let M : E → T -Alg be functor and (C, σ) be a limiting cone for UTM .

For objects E of E , let M(E) be the T -algebra T (mE)
hE→ mE , so that σE :C →

mE .

We need to construct a map h:TC → C turning all σE into maps of algebras,
meaning that σE ◦ h = hE ◦ TσE . Since (C, σ) is a limiting cone on UTM , this
means that we have to prove that (TC, (hE ◦TσE)E∈E) is a cone on UTM . But
f :E → E′ is a map in E and g = UTMf :mE → mE′ , then

g ◦ hE ◦ TσE = hE′ ◦ Tg ◦ TσE = hE′ ◦ TσE′ .

So there is a unique map h:TC → C such that σE ◦ h = hE ◦ TσE .

We need to show that h gives C a T -algebra structure, so h ◦ ηY = 1C and
h ◦ µ = h ◦ Th. To prove these equalities, it suffices to prove that the left and
right hand side become equal after precomposing with all maps of the form σE
(C being a limit). Therefore

σE ◦ h ◦ ηY = hE ◦ TσE ◦ ηY = hE ◦ ηmE ◦ σE = σE ,

shows the first equality. The proof of the second equality is similar.

It remains to verify that h is indeed the limit in T -Alg. We leave this to the
reader.

10.4 Reflective subcategories

In this subsection we will take a closer look at adjunctions where the right
adjoint is full and faithful. As it turns out this is equivalent to the counit being
a natural isomorphism.

68

Proposition 10.8 Let G:D → C be a functor with left adjoint F : C → D and
counit ε:FG⇒ 1. Then:

(i) G is faithful if and only if every component of ε is epi.

(ii) G is full if and only if every component of ε is split mono.

(iii) G is full and faithful if and only if ε is a natural isomorphism.

Proof. Let us first observe that for any map f :A→ B in D the map

FGA A B
εA f

transposes under the adjunction to Gf :

f ◦ εA = Gf ◦ εA = Gf ◦ 1A = Gf.

(i) Note that for any pair of parallel maps f, g:A→ B in D, we have:

Gf = Gg ⇔ Gf = Gg ⇔ f ◦ εA = g ◦ εA.

G being faithful means that the statement on the left implies f = g for any pair
of parallel maps f, g in D, while ε being pointwise epi means that the statement
on the right implies f = g for any pair of parallel maps f, g in D. This shows
(i).

(ii, ⇒) Let A be any object in D, and consider ηGA:GA→ GFGA. If G is
full, there is a map α:A→ FGA with Gα = ηGA. Then

α ◦ εA = Gα = ηGA = 1FGA,

and hence α ◦ εA = 1FGA. So ε is pointwise split mono.

(ii, ⇐) Let A and B be objects in D, g:GA → GB be any map in C and
α:A → FGA be such that α ◦ εA = 1FGA: the aim is to find a map f :A → B
such that Gf = g. So let us put f : = εB ◦Fg ◦α. Since α ◦ εA = 1FGA, we have

Gα = α ◦ εA = 1FGA = ηGA,

and therefore, using the triangle equalities,

Gf = GεB ◦GFg ◦Gα = GεB ◦GFg ◦ ηGA = GεB ◦ ηGB ◦ g = g,

as desired.

(iii) follows from (i) and (ii).

Corollary 10.9 Let G:D → C be a full and faithful right adjoint. If C has
colimits of shape E, then so does D.

69

Proof. Write F for the left adjoint to G and note that the previous result tells
us that FG ∼= 1. Let M : E → D be a diagram and C be the colimit for GM in
C. Since F preserves colimits, FC will be the colimit for FGM ∼= M .

Proposition 10.10 If G:D → C is a full and faithful right adjoint, then G is
monadic.

Proof. Let F be be the left adjoint, T be the induced monad and

K:D → T−Alg

be the comparison functor. Since G is full and faithful, K is full and faithful as
well; so it remains to show that K is essentially surjective.

Let us first observe that for any pair of objects A,B in C we have a commu-
tative diagram of sets:

HomD(FA,FB) HomC(A,GFB)

HomC(GFA,GFB)

f 7→f

f 7→Gf g 7→g◦ηA

Since both the top and left arrow are bijections, so must be the arrow on the
right.

Next, we will show that h:TX → X will be T -algebra if and only ηX is an
iso and h is its inverse. If h:GFX → X is a T -algebra, then h ◦ ηX = 1. But
then ηX ◦ h ◦ ηX = ηX , so the previous observation gives ηX ◦ h = 1 as well.
Conversely, ηX is invertible and h is its inverse, then h ◦ ηX = 1. Moreover,
µX ◦ TηX = 1 implies h ◦ µX = h ◦ Th.

So if h:TX → X is a T -algebra, h is an iso and the commutativity of

GFGFX GFX

GFX X

GFh

µ=G(εFX) h

h

shows that K is an equivalence and FUT is its pseudo-inverse.

Definition 10.11 A category D is a subcategory of the category C if there
is a functor G:D → C such that the underlying maps Ob(D) → Ob(C) and
Ar(D) → Ar(C) are inclusions. A subcategory D is called replete if for any
isomorphism f :C → D with C ∈ C and D ∈ D we have that both C and f
belong to D. A subcategory D is full if G is full (it is, of course, always faithful).
A subcategory is called reflective if it is full, replete and G has a left adjoint
(this left adjoint is then called the reflector).

70

Proposition 10.12 Let D be a reflective subcategory of C with inclusion G:D →
C. Then G creates limits.

Proof. Let us write F for the reflector and T for the monad induced on C. In
this case the comparison functor

K:D → T−Alg

is an isomorphism. We already now that it is full and faithful, so it remains to
show that it induces a bijection on objects. Since G is injective on objects, the
same applies to K; so it remains to show that K is surjective on objects. But
if h:GFX → X is a T -algebra, h will be isomorphism, as we have seen. Since
GFX ∈ D, we have X ∈ D by repleteness. So the statement follows Proposition
10.7.

10.5 Exercises

Exercise 73 Finish the proof of the theorem: for the group monad T , there is
an equivalence of categories between T -Alg and Grp. Check that the functor
T -Alg→ Grp defined there is a pseudo inverse to the comparison functor K.

Exercise 74 Let P : Setop → Set be the contravariant powerset functor, and P̄
its left adjoint, as in j) of 5.1. Let T : Set→ Set the induced monad.

a) Describe unit and multiplication of this monad explicitly.

b) Show that Setop is equivalent to T -Alg [Hint: if this proves hard, have a
look at VI.4.3 of Johnstone’s “Stone Spaces”].

c) Conclude that there is an adjunction

CABool // Setoo

which presents CABool as monadic over Set.

Exercise 75 Let Rng1 be the category of rings with unit and unitary ring
homomorphisms. Since every ring with 1 is a (multiplicative) monoid, there is
a forgetful functor G: Rng1 → Mon. For a monoid M , let Z[M] be the ring of
formal expressions

n1c1 + · · ·+ nkck

with k ≥ 0, n1, . . . , nk ∈ Z and c1, . . . , ck ∈ M . This is like a ring of polyno-
mials, but multiplication uses the multiplication in M . Show that this defines
a functor F : Mon → Rng1 which is left adjoint to G, and that G is monadic,
i.e. the category of GF -algebras is equivalent to Rng1. [Hint: Proceed as in
the example of the powerset monad. That is, let h:GF (M)→M be a monoid
homomorphism which gives M the structure of a GF -algebra. Find an abelian
group structure on M such that M becomes a ring with unit]

71

Given a monad T on a category C, let us define a category T -Adj of ad-

junctions C
F // D
G
oo such that GF = T . A map of such T -adjunctions from

C
F // D
G
oo to C

F ′ // D′
G′
oo is a functor K:D → D′ satisfying KF = F ′ and

G′K = G.

Exercise 76 For the purposes of this exercise let us write CT for the category
T -Alg and write GT :T -Alg→ C for the forgetful functor. In case T arises from

an adjunction C
F // D
G
oo , there was a comparison functor D K→ CT .

(a) Show that in the diagram

D K //

G
��

CT
GT

~~

C

F

__

FT

>>

we have that KF = FT and GTK = G.

(b) Show that the functor K is unique with this property. In other words, CT
together with FT and GT is the terminal object in T -Adj.

Exercise 77 In this exercise we will construct the initial object in T -Adj: the
Kleisli category of T , called CT . CT has the same objects as C, but a map in CT
from X to Y is an arrow X

f→ T (Y) in C. Composition is defined as follows:

given X
f→ T (Y) and Y

g→ T (Z) in C, considered as a composable pair of
morphisms in CT , the composition gf in CT is the composite

X
f→ T (Y)

T (g)→ T 2(Z)
µZ→ T (Z)

in C.

(a) Prove that CT defined this way is category.

(b) The adjunction CT
GT

// C
FToo is defined as follows: the functor GT sends

the object X to T (X) and f :X → Y (f :X → T (Y) in C) to

T (X)
T (f)→ T 2(Y)

µY→ T (Y)

The functor FT is the identity on objects and sends X
f→ Y to X

f→ Y
ηY→

T (Y), considered as X → Y in CT . Show that FT and GT are functors
and check FT a GT by constructing the unit and counit.

72

(c) Now let C
F // D
G
oo be an adjunction F a G with GF = T . Show that

there is a unique comparison functor L: CT → D such that GL = GT and
LFT = F .

Hint: L sends the object X to F (X) and f :X → Y (so f :X → T (Y) =
GF (Y) in C) to its transpose f̃ :F (X)→ F (Y).

Exercise 78 What does the Kleisli category for the covariant powerset monad
look like?

Exercise 79 Let T be a monad on C. Call an object of T -Alg free if it is in
the image of FT : C → T −Alg. Show that the Kleisli category CT is equivalent
to the full subcategory of T -Alg on the free T -algebras.

73

11 Presheaves revisited

In this final section we return to the theory of presheaves.

11.1 The category of elements

The purpose of this section is to show that every presheaf is a colimit of repre-
sentables.

Let C be a small category and X be a presheaf over C. Recall that we have
a category y ↓ X:

Objects An object consists of a pair (C, x) where C is an object in the category
C and x is a morphism x: yC → X.

Morphisms A morphism (D, y) → (C, x) is a morphism α:D → C such that
x ◦ yα = y.

This category is called the category of elements of X (and sometimes also de-
noted by

∫
CX). Note that it is a small category because C is small.

Remark 11.1 Note that under the Yoneda Lemma, a morphism x: yC → X
corresponds to an element x ∈ X(C). So we can also think of the objects of
the category of elements as pairs (C, x) such that x ∈ X(C). In that case a
morphism (D, y)→ (C, x) is a morphism α:D → C such that x ·α = y. In what
follows we will routinely identify maps yC → X and elements x ∈ X(C).

There is an obvious forgetful functor U : y ↓ X → C which we can compose
with the Yoneda embedding to obtain a functor

y ◦ U : y ↓ X → Psh(C).

We can think of this functor as a diagram. By construction there is a cocone
on this diagram with vertex X: indeed, for each object (C, x) in y ↓ X there
is a morphism yU(C, x) = yC → X which is x. Let us write π for this cocone
y ↓ X ⇒ ∆(X).

Proposition 11.2 This cocone is colimiting. Therefore every presheaf is a col-
imit of representables.

Proof. Suppose Y is a presheaf and we have a cocone ρ: y ◦ U ⇒ ∆(Y). This
cocone ρ chooses for each x ∈ X(C) a map ρ(C,x): yC → Y which we can think
of as an element of Y (C). So for our morphism of cocones F :X → Y we put:

FC(x) = ρ(C,x).

74

Since we want F ◦π(C,x) = σ(C,x) this definition is forced. Indeed, once we show
that F is a natural transformation, this equation will follow from the Yoneda
Lemma.

So let x ∈ X(C) and α:D → C be given. Then:

FD(x · α) = ρ(D,x·α)

= ρ(C,x) ◦ yα (ρ cocone)

= FC(x) · α.

This shows that F :X → Y is a natural transformation, which also completes
the proof.

11.2 Kan extensions

Theorem 11.3 For any small category C, the Yoneda embedding

y:C→ PSh(C)

has the following universal property: given a category E which is locally small
and cocomplete and a functor F :C → E, there is a colimit preserving functor
F!: PSh(C)→ E such that F! ◦ y ∼= F as indicated in the following diagram:

C PSh(C)

E

y

F
F!

Moreover, up to natural isomorphism, F! is the unique colimit preserving functor
with this property.

We refer to F! as the left Kan extension of F .

Proof. If F! preserves colimits and F! ◦ y ∼= F , then the following definition is
forced:

F!(X) = colim (F ◦ U : y ↓ X → C→ E).

In the sequel we will also just write:

F!(X) = colim(C,x)∈y↓XFC.

In particular, for each (C, x) we have a map ϕX(C,x):FC → F!X. In addition, if
K:X → Y is a map of presheaves, we have a cocone on F ◦U : y ↓ X → E whose
component at (C, x) is ϕY(C,KC(x)):FC → F!C. Therefore there exists a unique

map F!(K):F!X → F!Y such that

F!K ◦ ϕX(C,x) = ϕY(C,KC(x)).

75

From this it follows that F! is a functor. We clearly have that F! ◦ y ∼= F , since
y ↓ yC has a terminal object (which is (C, 1C)) and the colimit of a diagram
with a terminal object is the value at that terminal object. In addition, this
shows that ϕX(C,x)

∼= F!(x: yC → X), which also tells us that our definition of
F!K was forced.

To show that F! preserves colimits, we show something stronger: we show
that F! has a right adjoint F ∗: E → PSh(C). Indeed, the Yoneda Lemma allows
us to guess the formula for F ∗. Since we must have

F ∗(E)(C) ∼= HomPSh(C)(yC, F
∗E) ∼= HomE(F!(yC), E) ∼= HomE(FC,E),

we put
F ∗(E)(C): = HomE(FC,E)

and we have
HomPSh(C)(yC, F

∗E) ∼= HomE(FC,E)

by construction.

More formally, we have a functor

Cop × E Eop × E SetsF op×1 Hom

which transposes to a functor F ∗: E → PSh(C).

Now for any presheaf X we have a bijective correspondence:

HomPSh(C)(X,F
∗E) = HomPSh(C)(colim(C,x)∈y↓X yC, F

∗E)
∼= lim(C,x)∈y↓X HomPSh(C)(yC, F

∗E)
∼= lim(C,x)∈y↓X HomE(FC,E)
∼= HomE(colim(C,x)∈y↓X FC,E)

= HomE(F!X,E).

We leave the proof that this correspondence is natural to the reader.

Example 11.4 Simplicial sets are an important structure in algebraic topology:
they can be defined as presheaves on a category called ∆. This category ∆ looks
as follows:

Objects: The objects of this category are sets of the form [n] = {0, 1, . . . , n}
where n is a natural number. We think of these as finite non-empty linear
orders (carrying the usual ordering as natural numbers).

Morphisms: Maps [m]→ [n] are monotone functions.

There is a functor ∆→ Top sending [n] to the n-simplex:

∆n = { (x0, x1, . . . , xn) ∈ Rn+1 :

n∑
i=0

xi = 1 and xi ≥ 0, for all i }.

76

(Note that the 0-simplex is just a point; the 1 -simplex is a line segment; the
2-simplex is triangle; the 3-simplex is tetrahedron, et cetera.) If f : [m]→ [n] is
a monotone function, then this induces a continuous map ∆(f): ∆m → ∆n as
follows:

∆(f)(x0, . . . , xm)i =
∑
{xj : 0 ≤ j ≤ m, f(j) = i}.

The previous proposition says that these data determine an adjunction between
the category ∆̂ of simplicial sets and the category Top of topological spaces.
The left adjoint ∆̂→ Top is called geometric realisation, while the right adjoint
Top→ ∆̂ takes the singular (simplicial) complex of a topological space.

Theorem 11.5 Let f :C → D be a functor between small categories. The pre-
composition functor

f∗: D̂→ Ĉ

given by f∗(Q)(C) = Q(fC) has both adjoints.

Proof. Writing F = y ◦ f :C → D̂, the proof of the previous theorem gives one
an adjunction F! aF ∗ with

F ∗(Q)(C) = HomD̂(FC,Q).

But since
HomD̂(FC,Q) = HomD̂(yfC,Q) ∼= Q(fC)

by the Yoneda Lemma, we have F ∗ ∼= f∗ and we deduce that f∗ has a left
adjoint. So it remains to show that f∗ has a right adjoint f∗.

The formule for f∗ can again be deduced from the Yoneda Lemma. Indeed
we must have:

f∗(X)(D) ∼= HomD̂(yD, f∗X) ∼= HomĈ(f∗yD,X),

so we put f∗(X)(D): = HomĈ(f∗yD,X). Note that f∗(yD)(C) = HomD(fC,D),

so we can construct f∗ more formally by first taking the transpose J :D→ Ĉ of

Hom ◦ (fop × 1):Cop × D→ Cop × D→ Sets

and then defining f∗: Ĉ→ D̂ to be transpose of

Hom ◦ (Jop × 1):Dop × Ĉ→ Ĉop × Ĉ→ Sets.

To prove that f∗ a f∗, we use that f∗ preserves colimits because these are
computed pointwise in presheaf categories. Therefore we have a bijective corre-

77

spondence:

HomĈ(f∗Q,X) ∼= HomD̂(f∗(colim(D,q)∈y↓Q yD), X)
∼= HomĈ(colim(D,q)∈y↓Q f

∗yD,X)
∼= lim(D,q)∈y↓Q HomĈ(f∗yD,X)
∼= lim(D,q)∈y↓Q HomD̂(yD, f∗X)
∼= HomD̂(colim(D,q)∈y↓Q yD, f∗X)
∼= HomD̂(Q, f∗X).

The proof that this correspondence is natural is left to the reader. (Lecturer
needs a break.)

11.3 Exercises

Exercise 80 Let C be a small category and X be a presheaf over C. Show that

PSh(C)/X ∼= PSh(y ↓ X).

In other words: presheaf categories are closed under slicing.

78

